
x

DPDK - Kubernetes Plug-ins For
Accelerated Container Networking

M JAY

PLATFORM APPLICATION ENGINEER

2

Agenda
• Container – Overview

• Container Vs VM

• What Do You Want?

• Container & DPDK - Commonality

• Why Do You Need Multiple Network Interfaces?

• Not All Nodes are created equal

• Call For Action

3

Container Versus VM

4

Kubernetes Cluster

https://builders.intel.com/docs/networkbuilders/enabling_new_features_in_kubernetes_for_NFV.pdf

5

Overview

• Container:

• Create an isolation boundary at application level. Portability, Ease of packing

• Kubernetes:

• Automation for deployment, management

• Application scaling of containers across clusters of servers (hosts)

• Pod:

• Deployment unit. Can have single container or a small number of

• containers that share resources – tightly coupled

• Node:

• Worker or Minion – the machine where pods are deployed.

• Kubernetes Master and Minion:

• Master controls managing and scheduling of pods to minions

https://thenewstack.io/taking-kubernetes-api-spin/

6

Overview

• API Server:

• Front end to the clusters through which all other components interact

• Scheduler:

• Decides target node onto which a pod would be sechduled

• Controller Manager:

• Communicates with API server

• Creates, updates, deletes the pods, service etc.,

• Container runtime:

• Docker and Rocket for instance

• Kubelet:

• Agent that registers a node to the cluster. Syncs up with K8 master.

• It creates, deletes pods

• Kube-proxy

• Network Proxy and reflects services as defined in Kubernetes API on each node

7

Macrocosm and Microcosm – Commonality
Container Technology DPDK

Master Container DPDK Control Plane Master core 0

Pod Lcore

Node Physical core

Multiple pods can reside
in one Node

Multiple lcores (hyperthreads) reside in one Physical core

Microservice Pthread / Lthread

Minion Worker Core

8

Macrocosm and Microcosm – Commonality
Container Technology DPDK

API Server DPDK Load Balancer Core

Scheduler 1) Pthread to lcore Mapping
2) Core Pinning, NUMA Affinity, Balanced IO
3) Hyperthreads sharing L1, L2 Cache
4) Non Siblings sharing L3 Cache but not L1, L2 Cache

Controller Manager Environment Abstraction Layer, EAL managing resources

Etcd Hashing – 5 tuple resolving to worker core

Kubelet DPDK Dispatcher

9

Kubernetes Cluster

10

https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-in-kubernetes-application-note.pdf

11

Node Selection

12

Container Networking

13

System Architecture

14

Container Networking

• Docker0 – Default Networking of Docker

• CNI – Kubernetes Container Networking Interface
• Basic Overlay networking for containers in Kubernetes cluster
• Plug-in based container solution for networking
• common interface between the network plugins and container execution

• Why CNI?

• Application containers on Linux are a rapidly evolving area, and within
this area networking is not well addressed as it is highly environment-
specific.

• Many container runtimes and orchestrators will seek to solve the same
problem of making the network layer pluggable.

CNI - Connects with One Network Interface to K8 Pod

15

Why Do You Need Multiple Network Interfaces?

• Provide VNFs with redundancy of the network

• Segregate the control plane from the data plane traffic.

• Multiple stacks, different tuning and configuration requirement

• Network Slicing in high performance Networking

• Slicing offers container direct access to high performance NIC hardware

16

17

Multus Workflow

18

Multus Networking with SR-IOV/DPDK CNI

19

Software Components

20

Additional github links
• https://github.com/containernetworking/cni/blob/master/SPEC.md

• https://github.com/Intel-Corp/multus-cni/

• https://github.com/intel/sriov-network-deviceplugin.git

• https://github.com/intel/sriov-network-deviceplugin/blob/master/images/sriovdp-
daemonset.yaml

• Sample Deployment Specification Files - https://github.com/intel/sriov-network-
deviceplugin/tree/master/deployments

• SR-IOV CNI Plugin https://github.com/intel/sriov-cni.git

• To Build User Space CNI https://github.com/intel/userspace-cni-network-plugin

• User space network object /github.com/intel/userspace-cni-networkplugin/examples

21

Node Feature Discovery

22

Node Feature Discovery - NFD

https://builders.intel.com/docs/networkbuilders/node-feature-discovery-application-note.pdf

23

1st Class.. 2nd Class Distinction

• How to schedule pods that need high I/O traffic accordingly?

• Not all the nodes are created equal

• Some may have 1st class high performance components

• Others may be regular 2nd class

• How can we benefit in containers?

• How can we know which nodes have 1st class high performant building blocks?

24

Node Feature Discovery

• Run-once K8s job

• Detects hardware features that are available at node level

• How does Kubernetes use this information?

• For scheduling containerized VNFs for best match

25

CPU Core Manager

26

Cloud Tenants Demand Performance
• Enhanced Platform Awareness & CPU Pinning

• Single node can run many pods

• Some of these pods could be running CPU-intensive workloads

• In such a scenario, these pods might content for more CPU in that node

• Let us say the pod is throttled and depending on availability of CPU,

• The workload could move to different CPU

• Or

• Workload could be sensitive to context switches.

• Enter CPU Core Manager

27

CPU Manager – Low Latency, High Perf Containers

• Workload could be sensitive to context switches.

• How CPU manager can help?

• It allocates exclusive CPUs for demanding workload

• Enable CPU manager with policy

• Configure your pod to be in the Guaranteed QoS class.

• Request whole numbers of cores for containers needing exclusive cores

28

System Architecture

29

Multus CNI Plugin

https://builders.intel.com/docs/networkbuilders/enabling_new_features_in_kubernetes_for_NFV.pdf

30

Multus CNI Plugin
• What enhancement Multus CNI plugin brings?

• Multus CNI allows K8s pods to be multi-homed
• High performance Networking

• Which is default route? Who defines it?
• Masterplugin is for control plane and default route
• Flannel

• What about High performance Data path?
• Minionplugin for data plane

• What are some examples of Minionplugin?
• Flannel,
• IPAM [Internet Protocol Address Management]
• SR-IOV CNI Plugin – VF Interface Using Kernel
• SR-IOV CNI Plugin – VF Interface using DPDK

31

Multus CNI Plugin

Network Description I/F name shown on host

External / Internet 1) To Access Internet
2) Remote Access to host
3) Access to K8s pods

Eno1

Overlay Network Overlay network for K8s pods eno1

Data Network High performance Data
plane – SR-IOV VFs

Ens2f0 / ens2f1

32

SR-IOV CNI Plugin
• What enhancement SR-IOV CNI Plugin brings?

• SR-IOV CNI plugin enables high performance networking

• K8s pods to connect to SR-IOV VF.

• What drivers SR-IOV CNI Plugin supports?
• DPDK Drivers such as VFIO-PCI

• Kernel VF Drivers

• Note for general CNI

• 1) Configuration files – For all pods within the node having same network interface

• 2) Objects – Each pod has different network interface

33

Flow Chart
• Custom Resource Definition – Kubectl to create CRD

34

Multus CNI Plugin

35

Node Feature Discovery - NFD

https://builders.intel.com/docs/networkbuilders/node-feature-discovery-application-note.pdf

36

Node Feature Discovery Script - Mechanism

• NFD detects hardware features available on each node in a K8 cluster

• Advertises those features using node labels
• Node Feature Discovery Script launches a job

• That job deploys a single pod on each unlabeled node.

• When each pod runs, it contacts the K8 API server to add labels to the node.

37

Node Labels Usage - etcd

• Key/pair values – attached to pods or nodes

• Labels generated by NFD can be checked from the master node with kubectl commands

• Specify identifying attributes of objects relevant to end user

• Useful to organize objects into specific subsets

• All the Information is kept within etcd

38

CPU Manager

39

CPU Core Manager – 3 Pools of Processors

• Data plane pool is exclusive

• Control plane pool and Infra pools are shared

• When there is no pool mentioned in pod specification, then ?

• CPU Core manager will use cores from the infra pools

Remember Isolcpu in /proc/cmdline ?

Infra –> un-isolated

40

Call For Action

• Multus CNI Plugin
• Segregate your data plane from control plane

• Redundancy in your network

• SR-IOV CNI Plugin
• Attach directly to high performance Network Slicing

• High performance Containerized VNF

• Node Feature Discovery
• Deploy Pods on nodes with the desirable hardware features

• CPU Core Manager For K8s
• Isolate your minions to do their work

41

Acknowledgements
https://docs.docker.com/get-started/#containers-vs-virtual-machines#containers-vs-virtual-machines

https://thenewstack.io/taking-kubernetes-api-spin/

https://kubernetes.io/blog/2018/07/24/feature-highlight-cpu-manager/

https://builders.intel.com/docs/networkbuilders/enabling_new_features_in_kubernetes_for_NFV.pdf

Contact
M Jay
Muthurajan.Jayakumar@intel.com

