Asynchronous CBDMA Enqueue Framework for vHost-User

Jiayu Hu, Intel
VirtIO

• Para-virtual I/O is a virtualization technique to enhance VM I/O performance.

• VirtIO is a standard of para-virtual I/O, which consists of VirtIO front-end in VM and backend in hypervisor.

• Back-end communicates with front-end by copying packet buffers between hypervisor’s and VM’s memory.
vHost-User

• DPDK provides efficient user-space backend device, called vhost-user.

• vHost-user is widely used in virtual switches, like OVS.

Copying large bulk of data inside vhost-user becomes a hotspot.
Crystal Beach DMA

• Crystal Beach DMA (CBDMA) is a DMA engine in the processor, which is extremely efficient in performing memory copy operations.
• No CPU intervention during data transfer.

• There are two modes of offloading memory copy to the CBDMA:
 • Synchronous mode: the CPU submits copy jobs to the CBDMA and waits for completion.
 • Asynchronous mode: the CPU immediately returns as soon as submits copy jobs to the CBDMA, without waiting for completion.
Synchronous vs. Asynchronous

- Asynchronous mode can save precious CPU cycles and hide CBDMA copy overhead in executing CPU logics.

Offload memory copy of enqueue operation to the CBDMA asynchronously
Challenges

• How to fully utilize the CBDMA.
 • CBDMA performance is significantly influenced by the copy buffer length.

• How the CPU and the CBDMA cooperate to perform enqueue operation efficiently.

• Conflict with enqueue API semantics
 • Enqueue API releases the ownership of user buffers as soon as it finishes.
 • However, CBDMA copy is asynchronous with CPU operations. The CBDMA may still be copying packets when enqueue API returns.
Solutions of Addressing Challenges

• Adaptively assign workloads to the CPU and the CBDMA, according to the copy length.

• Asynchronous CPU and CBDMA enqueue pipeline

• Provide a new PMD, vhost-ioat PMD, for CBDMA-accelerated backend.
 • In enqueue operation, packets’ mbufs that are completed copy by the CBDMA are freed inside the vhost-ioat PMD, without returning to users.
Asynchronous CPU-CBDMA Enqueue Pipeline

- Vring enqueue operation has four steps:
 - Back-end notifies front-end of enqueued packets by updating head index of used ring.
 - The execution of the 2nd and 3rd steps can be out-of-order.
 - As the CBDMA is inefficient in copying small packets, we assign the 3rd step to the CPU and the 2nd step to the CBDMA.
 - We assign the 4th step to the CBDMA to guarantee predictable latency to front-end.

\begin{itemize}
 \item 1st Read descriptors
 \item 2nd Copy packets to buffers pointed by descriptors
 \item 3rd Store descriptors’ addresses to used ring
 \item 4th Update used ring’s head index
\end{itemize}
Asynchronous CPU-CBDMA Enqueue Pipeline

CPU-CBDMA enqueue operation

1. **1st** Read descriptors
2. **2nd** Copy packets to buffers pointed by descriptors
3. **3rd** Store descriptors’ addresses to used ring
4. **4th** Update used ring’s head index

- The 1st and 3rd steps of CPU and the 2nd and 4th steps of CBDMA execute in parallel.
- Thus, we can save precious CPU cycles to do meaningful jobs and hide CBDMA copy overhead in executing CPU logics.
vHost-ioat PMD

• vHost-ioat is a polling mode driver for CBDMA-accelerated VirtIO backend.
 • It implements CBDMA-accelerated data path.
 • For control path, it directly leverages the vhost library.

• vHost-ioat PMD provides basic functionality of packet reception and transmission.
 • In the TX direction, it offloads memory copy operations the CBDMA asynchronous.
 • It just supports CPU-based RX operation currently. CBDMA-accelerated RX operation is a work in progress.
vHost-ioat PMD

- Users can specify the following arguments in ‘--vdev’ option:
 - *iface*: specify a path to connect front end
 - *queues*: the number of queues
 - *client*: client mode or server mode
 - *ioats*: specify the CBDMA address used by a queue

- An example of creating a vhost-ioat port:

 `--vdev 'ioat_vhost_0,iface=/tmp/sock0,queues=2,ioats=(txq0@00:04.0;txq1@00:04.1),client=0'`

- Limitation
 - A CBDMA device can only be used by one queue.
Key Takeaways and Future Work

• Key takeaways
 • Offload memory copy inside vhost-user to the CBDMA asynchronously to improve performance.
 • Asynchronous CPU-CBDMA enqueue pipeline is designed for CBDMA-accelerated enqueue operation.
 • Provide vhost-ioat PMD for CBDMA-accelerated backend.

• Future work
 • Support CBDMA-accelerated dequeue operation.
 • Support sharing CBDMA among vhost-ioat queues and ports.
Thanks

jiayu.hu@intel.com