Reclaiming Memory — Efficient and
Lock Free — rte tgs

HONNAPPA NAGARAHALLI
ARM

Acknowledgements 2)DPDK

I\/Iaivika DHarmk

Gupta Thakkar

@ DATA PLANE DEVELOPMENT KIT

Agenda @ DPDK

Define Terms/Parameters
Effect of these Parameters
Requirements — from DPDK perspective

Design

=) DPDK
Terms/Parameters 9

Delete

Delete entryl from D1 Grace Period

Delete entry2 from D1

Reader Thread 1 Quiescent states

T2 Critical sections

T3

Free memory for entries1 and 2 after
every reader has gone through at
least 1 quiescent state

Remove reference I_/
to entryl

Time —»

Grace Period @ DPDK

Grace Period

Delete Free " Delete Start Free |Grace Period
emory not I (Memory not
Polling available) polling |< | 4 available)
l L’

T1

T2 [T2 TEEE
. Grace period
detection starts here

Continuous Polling => Increased memory access

Longer Grace Period => Extra additional memory

Critical Section — Smaller vs Bigger @ DPDK

Delete Free
Delete Free :
I _ Grace Period
Grace Period Pollin
Polling 8T, — N
B
T1
T2 D1
T2
Grace period Merge smaller critical
detection starts here sections into bigger

ones

Advantage — Smaller grace period Advantage — Less cycles for reporting
guiescent state
Disadvantage — More cycles required for

reporting quiescent state. Disadvantage — Larger grace period and
more polling

Requirements @ DPDK

- Need characteristics of LARGE critical section and SMALL grace period
Reduce number of cycles required for grace period detection

Reduce polling during grace period

Distributed/Concurrent grace period detection - needs lock free algorithm
- Don’t enforce a programming model

- rte_event_dequeue_burst supports blocking mode — efficient ‘bother

about me’, ‘don’t both about me’ APlIs

Design @ DPDK

- The list of readers is represented as a bit-map
Efficient

Allows for lock-free/concurrent operations

- Quiescent state detection is split into 2 steps

Allows for multiple/concurrent quiescent state queries
Start (rte_tgs_start)
> Lock-free — allows multiple writers to call this concurrently
> Allows the writers to start the process without having to wait for end of grace period

> Allows the writers to do other work while the grace period is underway — no cycles wasted

» Continuous polling not required — reduces memory accesses

Design @ DPDK

- Quiescent state detection is split into 2 steps

Check (rte_tgs_check)

> Lock-free — allows for multiple writers to call this concurrently

> If the writers do enough other work, mostly a success is returned in the first
polling attempt

> Does not enforce threading model for batching

- rte_tgs_regqister/rte_tqs_unregister are lock-free — allows
multiple worker threads to announce their participation

concurrently

Questions?

Backup Slides

Why not liburcu? 2)DPDK

- The list of readers is a linked list protected by a lock

Does not allow concurrent and lock-free insertion/deletion/traversal

Not very efficient to call on data plane threads

- Issues in Quiescent State detection API

synchronize _rcu (equivalent of rte_tqs_start + rte_tgs_check) is a blocking API, does not

return till the grace period is over
Since it is blocking, it cannot be called on the data plane threads

Polling the reader threads, while waiting for grace period to end, wastes CPU cycles

Polling causes additional memory accesses

It uses a lock which does not allow multiple synchronize rcu calls to run concurrently

Why not liburcu? 2)DPDK

- The list of readers is a linked list protected by a lock

Does not allow concurrent and lock-free insertion/deletion/traversal

Not very efficient to call on data plane threads

- Issues in Quiescent State detection API

synchronize _rcu (equivalent of rte_tqs_start + rte_tgs_check) is a blocking API, does not

return till the grace period is over
Since it is blocking, it cannot be called on the data plane threads

Polling the reader threads, while waiting for grace period to end, wastes CPU cycles

Polling causes additional memory accesses

It uses a lock which does not allow multiple synchronize rcu calls to run concurrently

Parts of DPDK present in other projects @ PFDK

- Atomic operations APls

https://github.com/ivmai/libatomic ops - Supports much wider set of

architectures

https://github.com/urcu/userspace-rcu/blob/master/doc/uatomic-api.md

- Any reasoning for

eal_common_string fns.c and rte_string_fns.h

- Bunch of data structures that exist in DPDK provided here

https://github.com/urcu/userspace-rcu/blob/master/doc/cds-api.md

