
x

Reclaiming Memory – Efficient and 
Lock Free – rte_tqs

HONNAPPA NAGARAHALLI
ARM



2

Acknowledgements

Malvika
Gupta

Dharmik
Thakkar



3

Agenda

• Define Terms/Parameters

• Effect of these Parameters

• Requirements – from DPDK perspective

• Design



4

D1 D2Reader Thread 1

D1 D2T 2

D1 D2T 3

Time

Terms/Parameters

Remove reference 
to entry1

Delete
Delete entry1 from D1

Free memory for entries1 and 2 after 
every reader has gone through at 
least 1 quiescent state

Free
Grace	Period

Delete entry2 from D1

Critical	sections

Quiescent	states



5

Grace Period

Longer	Grace	Period	=>	Extra	additional	memory

Continuous	Polling	=>	Increased	memory	access

D2D1

D1 D2T	1

Free Grace	Period	
(Memory	not	
available)

Delete

T	2

Polling

Grace	Period	
(Memory	not	
available)

D2D1

D1 D2T	1

FreeDelete Start

T	2

Grace period 
detection starts here

Polling



6

Critical Section – Smaller vs Bigger

Advantage	– Smaller	grace	period

Disadvantage	– More	cycles	required	for	
reporting	quiescent	state.

Grace	Period

D2D1

D1 D2T	1

FreeDelete

T	2

Polling

D2D1

D1 D2T	1

Free
Grace	Period

Delete

T	2

Grace period 
detection starts here

Polling

Merge smaller critical 
sections into bigger 
ones

Advantage	– Less	cycles	for	reporting	
quiescent	state

Disadvantage	– Larger	grace	period	and	
more	polling



7

Requirements

• Need characteristics of LARGE critical section and SMALL grace period

• Reduce number of cycles required for grace period detection

• Reduce polling during grace period

• Distributed/Concurrent grace period detection - needs lock free algorithm

• Don’t enforce a programming model

• rte_event_dequeue_burst supports blocking mode – efficient ‘bother 

about me’, ‘don’t both about me’ APIs



8

Design

• The list of readers is represented as a bit-map

• Efficient

• Allows for lock-free/concurrent operations

• Quiescent state detection is split into 2 steps

• Allows for multiple/concurrent quiescent state queries

• Start (rte_tqs_start)

Ø Lock-free – allows multiple writers to call this concurrently

Ø Allows the writers to start the process without having to wait for end of grace period

Ø Allows the writers to do other work while the grace period is underway – no cycles wasted

Ø Continuous polling not required – reduces memory accesses



9

Design

• Quiescent state detection is split into 2 steps

• Check (rte_tqs_check)

Ø Lock-free – allows for multiple writers to call this concurrently

Ø If the writers do enough other work, mostly a success is returned in the first 
polling attempt

Ø Does not enforce threading model for batching

• rte_tqs_register/rte_tqs_unregister are lock-free – allows 
multiple worker threads to announce their participation 
concurrently



Questions?



Backup Slides



12

Why not liburcu?

• The list of readers is a linked list protected by a lock

• Does not allow concurrent and lock-free insertion/deletion/traversal

• Not very efficient to call on data plane threads

• Issues in Quiescent State detection API

• synchronize_rcu (equivalent of rte_tqs_start + rte_tqs_check) is a blocking API, does not 
return till the grace period is over

• Since it is blocking, it cannot be called on the data plane threads

• Polling the reader threads, while waiting for grace period to end, wastes CPU cycles

• Polling causes additional memory accesses

• It uses a lock which does not allow multiple synchronize_rcu calls to run concurrently



13

Why not liburcu?

• The list of readers is a linked list protected by a lock

• Does not allow concurrent and lock-free insertion/deletion/traversal

• Not very efficient to call on data plane threads

• Issues in Quiescent State detection API

• synchronize_rcu (equivalent of rte_tqs_start + rte_tqs_check) is a blocking API, does not 
return till the grace period is over

• Since it is blocking, it cannot be called on the data plane threads

• Polling the reader threads, while waiting for grace period to end, wastes CPU cycles

• Polling causes additional memory accesses

• It uses a lock which does not allow multiple synchronize_rcu calls to run concurrently



14

Parts of DPDK present in other projects

• Atomic operations APIs

• https://github.com/ivmai/libatomic_ops - Supports much wider set of 

architectures

• https://github.com/urcu/userspace-rcu/blob/master/doc/uatomic-api.md

• Any reasoning for

• eal_common_string_fns.c and rte_string_fns.h

• Bunch of data structures that exist in DPDK provided here

• https://github.com/urcu/userspace-rcu/blob/master/doc/cds-api.md


