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Agenda @ DPDK

Define Terms/Parameters
Effect of these Parameters
Requirements — from DPDK perspective

Design
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Grace Period @ DPDK
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Critical Section — Smaller vs Bigger @ DPDK
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Advantage — Smaller grace period Advantage — Less cycles for reporting
guiescent state
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reporting quiescent state. Disadvantage — Larger grace period and
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Requirements @ DPDK

- Need characteristics of LARGE critical section and SMALL grace period
Reduce number of cycles required for grace period detection

Reduce polling during grace period

Distributed/Concurrent grace period detection - needs lock free algorithm
- Don’t enforce a programming model

- rte_event_dequeue_burst supports blocking mode — efficient ‘bother

about me’, ‘don’t both about me’ APlIs



Design @ DPDK

- The list of readers is represented as a bit-map
Efficient

Allows for lock-free/concurrent operations

- Quiescent state detection is split into 2 steps

Allows for multiple/concurrent quiescent state queries
Start (rte_tgs_start)
> Lock-free — allows multiple writers to call this concurrently
> Allows the writers to start the process without having to wait for end of grace period

> Allows the writers to do other work while the grace period is underway — no cycles wasted

» Continuous polling not required — reduces memory accesses



Design @ DPDK

- Quiescent state detection is split into 2 steps

Check (rte_tgs_check)

> Lock-free — allows for multiple writers to call this concurrently

> If the writers do enough other work, mostly a success is returned in the first
polling attempt

> Does not enforce threading model for batching

- rte_tgs_regqister/rte_tqs_unregister are lock-free — allows
multiple worker threads to announce their participation

concurrently



Questions?
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Why not liburcu? 2)DPDK

- The list of readers is a linked list protected by a lock

Does not allow concurrent and lock-free insertion/deletion/traversal

Not very efficient to call on data plane threads

- Issues in Quiescent State detection API

synchronize _rcu (equivalent of rte_tqs_start + rte_tgs_check) is a blocking API, does not

return till the grace period is over
Since it is blocking, it cannot be called on the data plane threads

Polling the reader threads, while waiting for grace period to end, wastes CPU cycles

Polling causes additional memory accesses

It uses a lock which does not allow multiple synchronize rcu calls to run concurrently
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Parts of DPDK present in other projects @ PFDK

- Atomic operations APls

https://github.com/ivmai/libatomic ops - Supports much wider set of

architectures

https://github.com/urcu/userspace-rcu/blob/master/doc/uatomic-api.md

- Any reasoning for

eal_common_string fns.c and rte_string_fns.h

- Bunch of data structures that exist in DPDK provided here

https://github.com/urcu/userspace-rcu/blob/master/doc/cds-api.md



