Implementing DPDK based
Application Container Framework
with SPP

Agenda @ DPDK

- Introduction of SPP

- SPP Container

- Containerize DPDK Apps

- SPP Container Tools

- Usecases

- Limitations and Restrictions

- Debugging

Introduction of SPP @ DPDK

Change network path with patch panel like simple interface

High-speed packet processing with DPDK
Update network configuration dynamically without terminating services

‘ VM VM VM VM VM '
: (| (| 1 (| 1 1 (| (| (| 1 :

Virtual Poris

e 2]

—eeeceeceececeececdecec e e e f e e e e e e e e e e e e e - -

Design) DPDK

- Multi-process Application Guest Guest

Primary process is a resource
manager
Secondary processes are workers A A

for packet forwarding

> spp_nfv (Direct forwarding) Host
> spp_vf (SR-IOV features)
> spp_mirror (TaaS)

- Several Virtual Port Support
ring pmd
vhost pmd
pcap pmd
etc.

5)DPDK

DATA PLANE DEVELOPMENT KIT

Patch Panel-like Interface

- Simple to add ports and connect them

spp > sec 1;add vhost | Add vhost interface
addvhost1

spp » sec 2;add vhost 2 as a F)()rt f(?r VM
addvhost2 and containers
spp » sec 1;add ring 0

addring0

spp » sec 2;add ring 0

addr;ngﬁ] rined vhosto] Patch between
spp » sec |;patch ring:¥ vhost:

patchringOvhost1 _ ports

spp » sec 2;patch vhost:2 ring:0
patchvhost2ringl
spp » topo_ suhgraph add containe

Add subgraph "containe
spp » topo term Show topology

graphically

Host

ning:)

mec] mee2

coniainer
- -

spp > |

[|

Hosted Project @ DPDK

LI THELINUX FOUNDATION

D P D K About v DPDK Core ~ News & Events - Ecosystem v Contribute ~ Hosted Projects Q

HOSTED PROJECTS

Pktgen SPP
Traffic generator powered by DPDK Soft Patch Panel — DPDK Resource Management Framework
Git Repo | Latest Release | Docs | Mailing List Git Repo | Latest Release | Docs | Mailing List
DTS NFF-Go
DPDK Test Suite Network Function Framework for Go
Git Repo | Latest Release | Docs | Test Plans Git Repo

The Latest Documentation

2)

DPDK

DATA PLANE DEVELOPMENT KIT

https.//spp.readthedocs.io/en/latest/

Soft Patch Panel

Docs » Tools » 1. SPP Container

Search docs

1. SPP Container

Soft Patch Panel

SPP Commands

o 1.1. Overview

B Tools
» 1.2, Getting Started
B 1. SPP Container + 1.3 Install
1.1. Overview + 1.4 Build Images
1.2. Getting Started + 1.5. App Container Launchers
1.3 Install s 1.6. Use Cases

+ 1.7. How to Define Your App Launcher
1.4. Build Images

1.5. App Container Launchers .
Q& Previous
1.6. Use Cases

1.7. How to Define Your App
Launcher

SPP VE Revision 3c1188a8.

mnndav cnm iza Trark In

& Read the Docs

Running SPP and DPDK applications on containers.

Built with Sphinx using a theme provided by Read the Docs.

View page source

Next ©

SPP Container

2

DPDK

DATA PLANE DEVELOPMENT KIT

- Toolset for easy deployment of containerized DPDK apps

- Containerize DPDK apps for running as App containers

- SPP is also launched as App containers for configuring network

host container e
virtio virtio W W
container l
o) G o) o
container container container container
(spp controller> shmem shmem ——> shmem shmem
port port

Containerize DPDK Apps —)DPDK

Build container images with dedicated Dockerfiles

Launch DPDK App via docker command with specifying ...
- Docker options for resources shared between host and
container (socket file , hugepages, etc.)

- The name of binary
- Options for DPDK’s EAL and application itself

Build Container Image @ DPDK

$ sudo docker build ¥
--build-arg home_dir=/root ¥
—--build-arg rte_sdk=/root/dpdk ¥
--build-arg rte_target=x86_ 64-native-linuxapp-gcc ¥
—--build-arg dpdk_repo=http://dpdk.org/git/dpdk ¥

FROM ubuntu:16.04
ARG rte_sdk

ARG rte_target
ARG home _dir

ARG dpdk_repo ——build-arg dpdk_branch= ¥

ARG dpdk_branch —f _/bui ld/ubuntu/dpdk/Dockerfile.16.04 ¥
ENV PATH ${rte sdk}/${rte target}/app:${PATH} _t éppc/dpdk—ubuntu?16-04 ¥ B

ENV RTE_SDK ${rte_sdk} ./bui ld/ubuntu/dpdk

[RUN apt-get update && apt-get install -y ¥ '
| git gcc python pciutils make libnuma-dev gcc-multilib ¥ Install packages with
! libarchive-dev linux-headers-$(uname -r) libpcap-dev pkg-config ¥ apt-get

- em e» o= e» e - en wn en on en e ee on e er e er e en e en e e e e - en on e e» en en e en e er e en e ee e en e E» e e e
P K K KK — S —r— I — S — I — I — I — S — I I — I — I I — Y — i — I — I I — I I — T Y I

|
|
)
(WORKDIR $home_dir \
:RUN git clone $dpdk branch $dpdk repo |
1 # Compile DPDK
| WORKDIR $rte_sdk

Compile DPDK and

1 RUN make install T=$rte_target apps
' RUN make app T=$rte_target
t RUN make examples T=%$rte target

- e wn e ew e En en En En En E» En E» En E» En s E» E» e En E» En En E» E» E» En E» E» E» E» E» E» En En E» E» E» E» Em E» e e e e e - -
— e - -— e em e o= A

:WORKDIR ${home_dir}
y ADD env.sh ${home_dir}/env.sh
RUN echo "source ${home_dir}/env.sh" >> ${home_dir}/._.bashrc :

|
\

Launch Containerized DPDK App @ DPDK

- Example of launching [2fwd with two vhost ports

$ sudo docker run -d --privileged ¥ Run with “--privileged” to
-v /tmp/sock5:/var/run/usvhost5 ¥ share sockets and
-v /tmp/sock6:/var/run/usvhost6 ¥ hugepages
-v /dev/hugepages:/dev/hugepages ¥
sppc/dpdk:16.04 ¥
/root/dpdk/examples/12fwd/x86_64-native-1inuxapp-gcc/12fwd ¥
-1 3,4 ¥
-n 4 ¥
-m 1024 ¥
—-—proc-type auto ¥
—--vdev virtio_user5,queues=1,path=/var/run/usvhost5 ¥
—-vdev virtio _user6,queues=1,path=/var/run/usvhost6 ¥
——File-prefix spp-12fwd-container5 ¥
-— ¥
-p 0x03

Use “--file-prefix” for preparing

metadata file for the process

SPP Container Tools 2 DPDK

. A set of Python scripts and Dockerfiles [l
for building and launching ||: ity
- ‘build’ tool is used for creating T sppentvepy
container images — testpmd.py
Support several distributions and versions — rﬁﬁfn-py
(but only Ubuntu currently)
Apps included in DPDK, Pktgen and SPP - bockerfile.16.04
- Each of app containers are launched ||: Pockerfile. Tateat
via ‘app’ tools —— env.sh
testpmd
pktgen
DPDK sample apps (I12fwd, etc.)
SPP

Build tool) DPDK

- Expand to ‘docker build’ with options for your target environments

- Choose the Dockerfile and define the name of container image from the
options

— build
$ python ./build/main.py | — ubuntu
—-dist-name ubuntu ¥ I — dpdk

|

| — Dockerfile.16.04
-t dpdk ¥

— ...
—-—dist-ver 16.04 ¥
—-—-dpdk-repo https://github.com/yasufum/dpdk-custom.git

sudo docker buinld ¥
—-buitld-arg home _dir=/root ¥
—-build-arg rte_sdk=/root/dpdk ¥
—--build-arg rte_target=x86 64-native-l1nuxapp-gcc ¥

—-build-arg dpdk_repo=https://github.com/yasufum/dpdk-custom.git ¥
—-build-arg dpdk _branch= ¥

-f ./buirld/ubuntu/dpdk/Dockerfile.16.04 ¥
-t SppC/dpdk—ubuntu 16.04 ¥ Container
-/build/ubuntu/dpdk image

Dockerfile

App tool) DPDK

- Expand to ‘docker run’ with options of docker docker, DPDK EAL and the app
- Vhost is simply assinged by giving IDs with ‘-d’ option

$./app/12fwd.py --dist-ver 16.04 -p 0x03 -1 1-2 -d 1,2

sudo docker run ¥
-d ¥

Sock files are mounted as

-v /tmp/sockl:/var/run/usvhostl ¥
v P v un/usv ‘/var/run/usvhost*’ to be shared

-v _/tmp/sock2:/var/run/usvhost2 ¥
-v /dev/hugepages:/dev/hugepages ¥
sppc/dpdk-ubuntu:16.04 ¥

/root/dpdk/examples/12fwd/x86_64-native-1inuxapp-gcc/I12fwd ¥

-1 1-2 -n 4 -m 1024 ¥

(
|
|
\

.{ Assigned with ‘--vdev’

' on the container

Create App Container of Your App @ DEDK

- You can launch your own application by building a container image and
Install your application

- Define Dockerfile for your application
- Packages installation
- Get and compile DPDK and your app from repos
- Configure env on the container

- Create App Container Script

App Container Script

- To understand how to implement app
container script, ‘app/helloworld.py’ is

the best example

There are just three parts should be
changed for your app
- Path of binary of your app
- File prefix for metadata file
- Options for your app (not includes EAL
opts)

Docker and DPDK EAL options are
setup by helper methods

- app_helper.setup docker_opts()
- app_helper.setup _eal opts()

main():
args = parse_args(Q)

Check for other mandatory opiton
args.dev_ids None:
common. error_exit('--dev-ids"')

Setup for vhost devices with given device IDs.
dev 1ds list = app_ helper dev_ids_to_list(args.dev_ids)
sock_files = app_helper.sock_files(dev_ids_list)

Setup docker commanc
docker cnd = [deO dOL|0I iV

o)
docker_opts = app_helper setup_ docker opts(F)Eitr] ()f t)ir]EirB/
args, target_name, sock_files)
of your app

SetlL rild run on conta :
cmd_path = "% mples/helloworld/%s/helloworld’ % (
env.RTE_SDK, env.RTE_TARGET)

hello_cmd = [cmd_path, ' '] F||e prEflx

file_prefix = 'spp-hello-container¥%d' % dev_ids_list[@]
eal_opts = app_helper.setup_eal_opts(args, file_prefix)

No application specific options for helloworld

hello_opts = [] Optlons for your app

cmds = docker_cmd + docker_opts + hello_cmd + eal_opts + hello_opts
cmds[-1] == "'
cmds . pop()

common . print_pretty_commands(cmds)

args.dry_run True:
exit()

lemove delimiters for print_pretty_commands().
cmds
cmds. remove(' ")
subprocess.call(cmds)

Create App Container of Your App @ DPDK

https://spp.readthedocs.io/en/latest/tools/sppc/howto_launcher.html

1.7. How to Define Your App Launcher

Soft Patch Panel

Setup Guide SPP container is a set of python script for launching DPDK application on a container with docker

SPPIGormmands command. You can launch your own application by preparing a container image and install your

B Tool application in the container. In this chapter, you will understand how to define application container
ools

for your application.
B 1. SPP Container

1.1. Overview 1.7.1. Build Image
1.2. Getting Started
e SPP container provides a build tool with version specific Dockerfiles. You should read the

: Dockerfiles to understand environmental variable or command path are defined. Build tool refer
1.4. Build Images

conf/env.py for the definitions before running docker build.
1.5. App Container Launchers

Leite Caes Dockerfiles of pktgen or SPP can help your understanding for building app container in which your

e17. H:""’ to Define Your App application is placed outside of DPDK's directory. On the other hand, if you build an app container
L
Auncher of DPDK sample application, you do not need to prepare your Dockerfile because all of examples

L S are compiled while building DPDK’s image.

1.7.2. Create App Container
Script

1.7.2. Create App Container Script

1.7.3. DPDK Sample App

Container

As explained in App Container Launchers, app container script shold be prepared for each of
1.7.4. App Container not for) R) A A A .
DPDK Sample applications. Application of SPP container is roughly categorized as DPDK sample apps or not. The

FEVE former case is like that you change an existing DPDK sample application and run as a app
container.

Usecases @ DPDK

- Several usecases suitable for using containerized DPDK apps

- NFV’s service function chaining by using fewer resources than VMs
Service entities running on containers are instantiated and removed cleanly
Less time to launch container than VM and start service

- High performance packet forwarding via shared memory

- Enable to zero-copy packet forwarding between each of containers of a multi-
process application

- It is still insufficient performance of vhost for some of telco’s requirements

Usecase 1

2

Testing two NFV apps as simple service function chaining

- Totally 7 Icores are required for
this usecase

One Icore for spp_primary
container.

Three Icores for four spp_nfv
containers.

Two Icores for pktgen container.

One Icores for 12fwd container.

host

container

Gpp_primawﬁ\}

(spp controller |

container container
oz
virtio virtio vir_tio virtio
container container
shmem ’ . ’ shmem

DPDK

DATA PLANE DEVELOPMENT KIT

High performance packet forwarding via shared memory

Throughput (Mpps)

Usecase 2

@ DATA PLANE DEVELOPMENT KIT

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

2 3 4 5 6 7 8 9 10

Number of containers

hostl

——_____Ztero-copy______
container { :
'_{ .. 0 -/ _-.m_q-{.’m . ___ -
container container container container
port | port
i 1

host2

port

port

Supermicro Mini Tower Intel Xeon D-1587

CPU Intel Xeon-D-1587 (1.7 GHz, 32 cores)
Memory 32GB

SSD Intel SSDSC2BB240G6

0S Linux (Ubuntu 16.04 LTS)

DPDK v18.02

pktgen-dpdk v3.4.9

SPP v18.02

20

Limitations @ DPDK

There are several imitations in ‘Virtio_user for Container Networking’

- Cannot work with —huge-unlink option. As we need to reopen the hugepage file to
share with vhost backend.

- Cannot work with —no-huge option. Currently, DPDK uses anonymous mapping under
this option which cannot be reopened to share with vhost backend.

- Cannot work when there are more than VHOST MEMORY_MAX_ NREGIONS(8)
hugepages. If you have more regions (especially when 2MB hugepages are used), the
option, —single-file-segments, can help to reduce the number of shared files.

- Applications should not use file name like HUGEFILE_FMT (“%smap_%d”). That will
bring confusion when sharing hugepage files with backend by name.

- Root privilege is a must. DPDK resolves physical addresses of hugepages which
seems not necessary, and some discussions are going on to remove this restriction.

https://doc.dpdk.org/guides/howto/virtio_user _for_container_networking.html#limitations

Restrictions @ DPDK

Containerized DPDK apps, including multi-process app work fine
with DPDK v18.02

For v18.05, it works in some of few cases but ...
- Two or more secondary processes cannot be launched
- Vhost networking does not work possibly

Does not work for v18.08

Launch Multiple Secondary Processes @ DPDK

- The reason for several sec process cannot be launched is a change of initializing memseg files.
- The name of memseg file is defined with PID

// lib/librte_eal/linuxapp/eal/eal _memalloc.c

static iInt

secondary_msl_create walk(const struct rte_memseg_ list *msl,
void *arg _ rte_unused)

{

struct rte_mem_config *mcfg = rte_eal_get configuration()->mem_config;
struct rte_memseg_list *primary_msl, *local_msl;
char name[PATH_MAX];

/* create distinct fbarrays for each secondary */
snprintf(name, RTE_FBARRAY_NAME_LEN, '‘%s %1,
primary_msl—>memseg_arr.name,‘getpid(j);

- It cannot ensure unique name because PID is assigned from 1 in each of containers

rte_fbarray init(): couldn®t lock /var/run/dpdk/rte/fbarray memseg-1048576k-0-0, 1%

Resource temporarily unavailable

- To avoid this error, need to change to use unique ID for containers
— | succeeded to launch multiple secondaries, and going to send a patch for DPDK v18.11

Debugging 2)DPDK

- How to debug SPP container

1. Create dev version of DPDK and SPP repos on github

2. Create container image of SPP dev

https://github.com/yasufum

dpdk

$ python ./build/main.py

-t spp ¥

—--dist-ver 16.04 ¥

——-dpdk-repo https://github.com/yasufum/dpdk.git

—--spp-repo https://github.com/yasufum/spp.git

. waiting for long time ...

3. Debug and update source code

4. Push the changes to github, and return to the 2nd step

... Need to be improved for more efficient way

DPDK

Thank you YASUFUMI OGAWA

ogawa.yasufumi@lab.ntt.co.jp

	Implementing DPDK based Application Container Framework with SPP
	Agenda
	Introduction of SPP
	Design
	Patch Panel-like Interface
	Hosted Project
	The Latest Documentation
	SPP Container
	Containerize DPDK Apps
	Build Container Image
	Launch Containerized DPDK App
	SPP Container Tools
	Build tool
	App tool
	Create App Container of Your App
	App Container Script
	Create App Container of Your App
	Usecases
	Usecase 1
	Usecase 2
	Limitations
	Restrictions
	Launch Multiple Secondary Processes
	Debugging
	Thank you

