
x

Implementing DPDK based
Application Container Framework
with SPP
YASUFUMI OGAWA, NTT

2

Agenda

• Introduction of SPP

• SPP Container

• Containerize DPDK Apps

• SPP Container Tools

• Usecases

• Limitations and Restrictions

• Debugging

3

Introduction of SPP

VM VM VM VM VM

Virtual Ports

Physical Ports

• Change network path with patch panel like simple interface
• High-speed packet processing with DPDK
• Update network configuration dynamically without terminating services

4

Design

Host

Guest

NFV App
vhost

MPLSFirewallL2
Switch

Guest

NFV App
vhost

SPP

Resource Manager
(Primary)

spp_nfv
(Secondary)

spp_nfv
(Secondary)

• Multi-process Application
• Primary process is a resource

manager
• Secondary processes are workers

for packet forwarding
 spp_nfv (Direct forwarding)
 spp_vf (SR-IOV features)
 spp_mirror (TaaS)

• Several Virtual Port Support
• ring pmd
• vhost pmd
• pcap pmd
etc.

5

Patch Panel-like Interface
• Simple to add ports and connect them

Add vhost interface
as a port for VM
and containers

Patch between
ports

Show topology
graphically

6

Hosted Project

Here!

7

The Latest Documentation

https://spp.readthedocs.io/en/latest/

8

SPP Container
• Toolset for easy deployment of containerized DPDK apps

• Containerize DPDK apps for running as App containers

• SPP is also launched as App containers for configuring network

9

Containerize DPDK Apps

• Build container images with dedicated Dockerfiles

• Launch DPDK App via docker command with specifying ...
• Docker options for resources shared between host and

container (socket file , hugepages, etc.)
• The name of binary
• Options for DPDK’s EAL and application itself

10

Build Container Image
FROM ubuntu:16.04
ARG rte_sdk
ARG rte_target
ARG home_dir
ARG dpdk_repo
ARG dpdk_branch
ENV PATH ${rte_sdk}/${rte_target}/app:${PATH}
ENV RTE_SDK ${rte_sdk}
ENV RTE_TARGET ${rte_target}
RUN apt-get update && apt-get install -y ¥

git gcc python pciutils make libnuma-dev gcc-multilib ¥
libarchive-dev linux-headers-$(uname -r) libpcap-dev pkg-config ¥
&& apt-get clean && rm -rf /var/lib/apt/lists/*

WORKDIR $home_dir
RUN git clone $dpdk_branch $dpdk_repo
Compile DPDK
WORKDIR $rte_sdk
RUN make install T=$rte_target
RUN make app T=$rte_target
RUN make examples T=$rte_target
Set working directory when container is launched
WORKDIR ${home_dir}
ADD env.sh ${home_dir}/env.sh
RUN echo "source ${home_dir}/env.sh" >> ${home_dir}/.bashrc

$ sudo docker build ¥
--build-arg home_dir=/root ¥
--build-arg rte_sdk=/root/dpdk ¥
--build-arg rte_target=x86_64-native-linuxapp-gcc ¥
--build-arg dpdk_repo=http://dpdk.org/git/dpdk ¥
--build-arg dpdk_branch= ¥
-f ./build/ubuntu/dpdk/Dockerfile.16.04 ¥
-t sppc/dpdk-ubuntu:16.04 ¥
./build/ubuntu/dpdk

Install packages with
apt-get

Compile DPDK and
apps

Activate environments

11

Launch Containerized DPDK App
• Example of launching l2fwd with two vhost ports

$ sudo docker run -d --privileged ¥
-v /tmp/sock5:/var/run/usvhost5 ¥
-v /tmp/sock6:/var/run/usvhost6 ¥
-v /dev/hugepages:/dev/hugepages ¥
sppc/dpdk:16.04 ¥
/root/dpdk/examples/l2fwd/x86_64-native-linuxapp-gcc/l2fwd ¥
-l 3,4 ¥
-n 4 ¥
-m 1024 ¥
--proc-type auto ¥
--vdev virtio_user5,queues=1,path=/var/run/usvhost5 ¥
--vdev virtio_user6,queues=1,path=/var/run/usvhost6 ¥
--file-prefix spp-l2fwd-container5 ¥
-- ¥
-p 0x03

Run with “--privileged” to
share sockets and
hugepages

Use “--file-prefix” for preparing
metadata file for the process

12

SPP Container Tools
• A set of Python scripts and Dockerfiles

for building and launching

• ‘build’ tool is used for creating
container images

• Support several distributions and versions
(but only Ubuntu currently)

• Apps included in DPDK, Pktgen and SPP

• Each of app containers are launched
via ‘app’ tools

• testpmd
• pktgen
• DPDK sample apps (l2fwd, etc.)
• SPP

dpdk1805@lancer:~/spp/tools/sppc$ tree
├── app
│ ├── __init__.py
│ ├── l2fwd.py
│ ├── spp-nfv.py
│ ├── ...
│ └── testpmd.py
├── build
│ ├── main.py
│ ├── ...
│ └── ubuntu
│ ├── dpdk
│ │ ├── Dockerfile.16.04
│ │ ├── Dockerfile.18.04
│ │ ├── Dockerfile.latest
│ │ └── env.sh
│ ├── ...
├── conf
│ ├── env.py
│ ├── ...
├── lib
│ ├── __init__.py
│ ├── ...

13

Build tool
• Expand to ‘docker build’ with options for your target environments
• Choose the Dockerfile and define the name of container image from the

options

sudo docker build ¥
--build-arg home_dir=/root ¥
--build-arg rte_sdk=/root/dpdk ¥
--build-arg rte_target=x86_64-native-linuxapp-gcc ¥
--build-arg dpdk_repo=https://github.com/yasufum/dpdk-custom.git ¥
--build-arg dpdk_branch= ¥
-f ./build/ubuntu/dpdk/Dockerfile.16.04 ¥
-t sppc/dpdk-ubuntu:16.04 ¥
./build/ubuntu/dpdk

$ python ./build/main.py
--dist-name ubuntu ¥
-t dpdk ¥
--dist-ver 16.04 ¥
--dpdk-repo https://github.com/yasufum/dpdk-custom.git

├── build
│ └── ubuntu
│ ├── dpdk
│ │ ├── Dockerfile.16.04
│ ├── ...

Dockerfile
Container
image

14

App tool
• Expand to ‘docker run’ with options of docker docker, DPDK EAL and the app
• Vhost is simply assinged by giving IDs with ‘-d’ option

$./app/l2fwd.py --dist-ver 16.04 -p 0x03 -l 1-2 -d 1,2

sudo docker run ¥
-d ¥
--privileged ¥
-v /tmp/sock1:/var/run/usvhost1 ¥
-v /tmp/sock2:/var/run/usvhost2 ¥
-v /dev/hugepages:/dev/hugepages ¥
sppc/dpdk-ubuntu:16.04 ¥
/root/dpdk/examples/l2fwd/x86_64-native-linuxapp-gcc/l2fwd ¥
-l 1-2 -n 4 -m 1024 ¥
--proc-type auto ¥
--vdev virtio_user1,queues=1,path=/var/run/usvhost1 ¥
--vdev virtio_user2,queues=1,path=/var/run/usvhost2 ¥
--file-prefix spp-l2fwd-container1 ¥
-- ¥
-p 0x03

Sock files are mounted as
‘/var/run/usvhost*’ to be shared

Assigned with ‘--vdev’
on the container

15

Create App Container of Your App
• You can launch your own application by building a container image and

install your application

• Define Dockerfile for your application
• Packages installation
• Get and compile DPDK and your app from repos
• Configure env on the container

• Create App Container Script

16

App Container Script
• To understand how to implement app

container script, ‘app/helloworld.py’ is
the best example

• There are just three parts should be
changed for your app

• Path of binary of your app
• File prefix for metadata file
• Options for your app (not includes EAL

opts)

• Docker and DPDK EAL options are
setup by helper methods

• app_helper.setup_docker_opts()
• app_helper.setup_eal_opts()

Path of binary
of your app

File prefix

Options for your app

17

Create App Container of Your App
https://spp.readthedocs.io/en/latest/tools/sppc/howto_launcher.html

18

Usecases
• Several usecases suitable for using containerized DPDK apps

• NFV’s service function chaining by using fewer resources than VMs
• Service entities running on containers are instantiated and removed cleanly
• Less time to launch container than VM and start service

• High performance packet forwarding via shared memory
• Enable to zero-copy packet forwarding between each of containers of a multi-

process application
• It is still insufficient performance of vhost for some of telco’s requirements

19

Usecase 1
Testing two NFV apps as simple service function chaining

• Totally 7 lcores are required for
this usecase

• One lcore for spp_primary
container.

• Three lcores for four spp_nfv
containers.

• Two lcores for pktgen container.

• One lcores for l2fwd container.

20

Usecase 2

Supermicro Mini Tower Intel Xeon D-1587
CPU Intel Xeon-D-1587 (1.7 GHz, 32 cores)
Memory 32GB
SSD Intel SSDSC2BB240G6
OS Linux (Ubuntu 16.04 LTS)
DPDK v18.02
pktgen-dpdk v3.4.9
SPP v18.02

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

2 3 4 5 6 7 8 9 10

Number of containers

Th
ro

ug
hp

ut
(M

pp
s)

zero-copy

host2

host1

pktgen

port port

High performance packet forwarding via shared memory

21

Limitations

• Cannot work with –huge-unlink option. As we need to reopen the hugepage file to
share with vhost backend.

• Cannot work with –no-huge option. Currently, DPDK uses anonymous mapping under
this option which cannot be reopened to share with vhost backend.

• Cannot work when there are more than VHOST_MEMORY_MAX_NREGIONS(8)
hugepages. If you have more regions (especially when 2MB hugepages are used), the
option, –single-file-segments, can help to reduce the number of shared files.

• Applications should not use file name like HUGEFILE_FMT (“%smap_%d”). That will
bring confusion when sharing hugepage files with backend by name.

• Root privilege is a must. DPDK resolves physical addresses of hugepages which
seems not necessary, and some discussions are going on to remove this restriction.

https://doc.dpdk.org/guides/howto/virtio_user_for_container_networking.html#limitations

There are several limitations in ‘Virtio_user for Container Networking’

22

Restrictions

• Containerized DPDK apps, including multi-process app work fine
with DPDK v18.02

• For v18.05, it works in some of few cases but ...
• Two or more secondary processes cannot be launched
• Vhost networking does not work possibly

• Does not work for v18.08

23

Launch Multiple Secondary Processes
• The reason for several sec process cannot be launched is a change of initializing memseg files.

// lib/librte_eal/linuxapp/eal/eal_memalloc.c
static int
secondary_msl_create_walk(const struct rte_memseg_list *msl,

void *arg __rte_unused)
{

struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct rte_memseg_list *primary_msl, *local_msl;
char name[PATH_MAX];
...
/* create distinct fbarrays for each secondary */
snprintf(name, RTE_FBARRAY_NAME_LEN, "%s_%i",

primary_msl->memseg_arr.name, getpid());

rte_fbarray_init(): couldn't lock /var/run/dpdk/rte/fbarray_memseg-1048576k-0-0_1:
Resource temporarily unavailable

• The name of memseg file is defined with PID

• It cannot ensure unique name because PID is assigned from 1 in each of containers

• To avoid this error, need to change to use unique ID for containers
→ I succeeded to launch multiple secondaries, and going to send a patch for DPDK v18.11

24

Debugging

• How to debug SPP container

https://github.com/yasufum

dpdk

spp

$ python ./build/main.py
-t spp ¥
--dist-ver 16.04 ¥
--dpdk-repo https://github.com/yasufum/dpdk.git
--spp-repo https://github.com/yasufum/spp.git
...
... waiting for long time ...

1. Create dev version of DPDK and SPP repos on github

2. Create container image of SPP dev

3. Debug and update source code

4. Push the changes to github, and return to the 2nd step

... Need to be improved for more efficient way

Thank you YASUFUMI OGAWA

ogawa.yasufumi@lab.ntt.co.jp

	Implementing DPDK based Application Container Framework with SPP
	Agenda
	Introduction of SPP
	Design
	Patch Panel-like Interface
	Hosted Project
	The Latest Documentation
	SPP Container
	Containerize DPDK Apps
	Build Container Image
	Launch Containerized DPDK App
	SPP Container Tools
	Build tool
	App tool
	Create App Container of Your App
	App Container Script
	Create App Container of Your App
	Usecases
	Usecase 1
	Usecase 2
	Limitations
	Restrictions
	Launch Multiple Secondary Processes
	Debugging
	Thank you

