

Revise 4K Pages Performance Impact For DPDK Applications

LEI YAO JIAYU HU

- Why We Try To enable 4K-Page in DPDK
- The Performance Bottleneck using 4K-Page Memory
- Using 4K-Page Memory With Different Workload
- Improve the Performance

- Flexible: 4K page can be allocated on demand, no memory will be preserved when system start up
- Security: No root permission need, it brings more security assurance

Why 4K page is rarely used in DPDK?

Performance Concern!

From DPDK 17.11 release, 4K page is supported in DPDK with VFIO-PCI driver. IOMMU can help for the IOVA to PA translation

1. Turn on VT-d in BIOS:

2. Turn off transparent hugepage and enable IOMMU in Grub

transparent hugepage=never, intel iommu=on

3. Bind all NIC use in DPDK to vfio-pci, then launch DPDK application

usertools/dpdk-devbind.py -b vfio-pci [BDF]

DPDK will use IOVA as VA mode in this setting, then the 4K based IOVA address will be translated to PA by Intel IOMMU, Sample command:

testpmd -l 1-3 -n 4 -m 1024 --no-huge -- -i

First Impression Using 4K Page in DPDK

Potential Performance Bottleneck: TLB, IOTLB, UPI

The TLB? The UPI?

The TLB? NO

Perf result show that the TLB miss event number in 4K is higher than 2M hugepage, but the total miss rate is still low.

4K Page:

#	time	counts	unit events		
5.0	00105834	26,414,244	dTLB-load-misses	#	0.43% of all dTLB cache hits
5.0	00105834	6,213,669,079	dTLB-loads		

2M Hugepage:

# time	counts	unit events		
5.000104143	3 209	dTLB-load-misses	#	0.00% of all dTLB cache hits
5 000104143	3 4 792 519 063	dTI B-loads		

The UPI? NO

Remote Memory vs Local Memory - 3.1%

^{*} Result on Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

IOTLB?

Yes.

IOMMU is per socket nor per core. On Intel latest Xeon Processor, Processor Counter Monitor (PCM) can trace IOTLB miss event.

/pcm/pcm-iio.x:

4K Page:

4K Page:								
IIO Stack 1 - PCIe0	Inbound write	Inbound read	Outbound rea	ad Outbound write	VT-d Occupand	y TLB Miss	TLB1 Miss	TLB full
Part0 (1st x16/x8/x4)	2030 M	1204 M	0	1309 K	34 G	22 M	23 M	Θ
Part1 (2nd x4)	0	0	0	0	!			
Part2 (2nd x8/3rd x4) Part3 (4th x4)	1639 M 0	1605 M	I 0	1129 K	<u> </u>			
Parts (4th X4)		Ι Θ	0	0		i	1 1	
2M Hugepage	<u> </u>		·	_				
<u> </u>	Inbound write	Inbound read	Outbound rea	ad Outbound write	VT-d Occupanc	VITLB Miss		TLB full
IIO Stack 1 - PCIeO			<u> </u>	ad Outbound write		<u> </u>	<u> </u>	
IIO Stack 1 - PCIe0 Part0 (1st x16/x8/x4)	 5122 M	4465 M	Outbound rea	 1840 K	VT-d Occupano	y TLB Miss	TLB1 Miss 	TLB full
IIO Stack 1 - PCIe0 Part0 (1st x16/x8/x4) Part1 (2nd x4)	 5122 M 0	 4465 M 0	0	_ 1840 K 0		<u> </u>	<u> </u>	
	 5122 M	4465 M	<u> </u>	 1840 K		<u> </u>	<u> </u>	

^{*} Result on Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

Is IOMMU Bottleneck For All Scenario?

4K-page memory is not the bottleneck for most of the workload in real world.

^{*} Result on Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

Is 4K-Page Lack of Performance at All Packet Size?

The key performance gap comparing from 4K Page Memory is between packet size 64B ~ 256B

Reduce NIC txd/rxd to avoid too much IOTLB miss

IMIX Packets:

Performance of 4K-page with rxd/txd = 1024:

Performance of 4K-page with rxd/txd = 128: + 50%

64B Packets:

Performance of 4K-page with rxd/txd = 1024:

Performance of 4K-page with rxd/txd = 128: + 123%

128B Packets:

Performance of 4K-page with rxd/txd = 1024:

Performance of 4K-page with rxd/txd = 128: + 9%

256B Packets:

Performance of 4K-page with rxd/txd = 1024:

Performance of 4K-page with rxd/txd = 128: + 10%

It can work but not good idea. This method has some limitation.

How to Improve IO Performance for Small Packets

Limited the RX rate! Option 1: Limit the Inject Packet Rate

■ RFC 2544

How to Improve IO Performance for Small Packets

Option 2. Slow down the frequency touching the NIC Rxd

Performance Trend with Different CPU Stall Time

* Result on Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

On my test bench, 2us is the best practice number to for IO fwd workload.

Can Transparent Hugepage help?

- No Performance Gain for IMIX Packets
- No IOTLB miss event improvement.
- Default is "madvise" in latest Kernel, not always

Conclusion

- Only in IO bound scenario, 4K-page has performance concern
- IOMMU is the performance bottleneck
- Reduce the RX rate can be helpful for system throughput
- Transparent hugepage can't help throughput

