
x

Using nDPI over DPDK to Classify
and Block Unwanted Network Traffic
Luca Deri <deri@ntop.org>
@lucaderi

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

Traffic Classification: an Overview

• Traffic classification is compulsory to
understand the traffic flowing on a network
and enhance user experience by tuning
specific network parameters.

• Main classification methods include:
◦TCP/UDP port classification.
◦QoS based classification (DSCP).
◦Statistical Classification.
◦Deep Packet Inspection.

!2

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

Port- and DSCP-based Traffic Classification

• Port-based Classification
◦In the early day of the Internet, network traffic
protocols were identified by protocol and port.
◦Can classify only application protocols operating on
well known ports (no rpcbind or portmap).
◦Easy to cheat and thus unreliable (TCP/80 !=
HTTP).

• QoS Markers (DSCP)
◦Similar to port classification but 
based on QoS tags.
◦Usually ignored as it is easy to 
cheat and forge.

!3

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

Statistical Traffic Classification

• Classification of IP packets (size, port, flags,
IP addresses) and flows (duration,
frequency…).

• Based on rules written manually, or
automatically using machine learning (ML)
algorithms.

• ML requires a training set of very good quality,
and it is generally computationally intensive.

• Detection rate can be as good as 95% for
cases which were covered by the training set,
and poor accuracy for all the other cases.

!4

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

Deep Packet Inspection (DPI)

• Technique that inspects the packet payload.
• Computationally intensive with respect to
simple packet header analysis.

• Concerns about privacy and confidentiality of
inspected data.

• Encryption is becoming pervasive, thus
challenging DPI techniques.

• No false positives unless statistical methods
or IP range/flow analysis are used by DPI
tools.

!5

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

Using DPI in Traffic Monitoring

• Packet header analysis is no longer enough
as it is unreliable and thus useless.

• Security and network administrators want to
know what are the real protocols flowing on a
network, this regardless of the port being
used.

• Selective metadata extraction (e.g. HTTP URL
or User-Agent) is necessary to perform
accurate monitoring and thus this task should
be performed by the DPI toolkit without
replicating it on monitoring applications.

!6

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

Welcome to nDPI

• In 2012 we decided to develop our own GNU
LGPL DPI toolkit (based on a unmaintained
project named OpenDPI) in order to build an
open DPI layer for ntop and third-party
applications (Wireshark, netfilter, ML tools…).

• Protocols supported exceed 240 and include:
◦ P2P (Skype, BitTorrent)
◦Messaging (Viber, Whatsapp, MSN, Facebook)
◦Multimedia (YouTube, Last.gm, iTunes)
◦ Conferencing (Webex, CitrixOnLine)
◦ Streaming (Zattoo, Icecast, Shoutcast, Netflix)
◦ Business (VNC, RDP, Citrix, *SQL)

!7

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

What is a Protocol in nDPI? [1/2]

• Each protocol is identified as <major>.<minor>
protocol. Example:
◦DNS.Facebook
◦QUIC.YouTube and QUIC.YouTubeUpload

• Caveat: Skype or Facebook are protocols in the
nDPI world but not for IETF.

• The first question people ask when they have
to evaluate a DPI toolkit is: how many protocol
do you support? This is not the right question.

!8

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

What is a Protocol in nDPI? [2/2]

• Today most protocols are HTTP/SLL-based.
• nDPI includes support for string-based
protocols detection:
◦DNS query name
◦HTTP Host/Server header fields
◦SSL/QUIC SNI (Server Name Indication)

• Example: NetFlix detection

!9

 { "netflix.com", NULL, "netflix" TLD, “NetFlix”, NDPI_PROTOCOL_NETFLIX, NDPI_PROTOCOL_CATEGORY_STREAMING, NDPI_PROTOCOL_FUN },
 { "nflxext.com", NULL, “nflxext" TLD, "NetFlix", NDPI_PROTOCOL_NETFLIX, NDPI_PROTOCOL_CATEGORY_STREAMING, NDPI_PROTOCOL_FUN },
 { "nflximg.com", NULL, "nflximg" TLD, "NetFlix", NDPI_PROTOCOL_NETFLIX, NDPI_PROTOCOL_CATEGORY_STREAMING, NDPI_PROTOCOL_FUN },
 { "nflximg.net", NULL, "nflximg" TLD, "NetFlix", NDPI_PROTOCOL_NETFLIX, NDPI_PROTOCOL_CATEGORY_STREAMING, NDPI_PROTOCOL_FUN },
 { "nflxvideo.net", NULL, "nflxvideo" TLD, "NetFlix", NDPI_PROTOCOL_NETFLIX, NDPI_PROTOCOL_CATEGORY_STREAMING, NDPI_PROTOCOL_FUN },
 { "nflxso.net", NULL, "nflxso" TLD, "NetFlix", NDPI_PROTOCOL_NETFLIX, NDPI_PROTOCOL_CATEGORY_STREAMING, NDPI_PROTOCOL_FUN },

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

nDPI Categories [1/2]
• Protocols are too many, and they increase daily.
• Many people are not familiar with protocol
names.

• Often people ask us questions like “How can I
prevent my children from using social
networks?”

• Solution
◦nDPI allows protocols to be clustered in user-defined
categories such as VoIP, P2P, Cloud…
◦Categories can include thousand of entries and can be
(re-)loaded dynamically. Example: malware, mining,
advertisement, banned site, inappropriate content…

!10

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

nDPI Categories [2/2]

!11

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

nDPI Internals
• Applications using nDPI are responsible for
◦Capturing (forwarding in inline mode) packets
◦Maintaining flow state.

• Based on flow protocol/port all dissectors that
can potentially match the flow are applied
sequentially starting from the one that most likely
match.

• Each dissector is coded into a different .c file for
the sake of modularity and extensibility.

• There is an extra .c file for IP matching (e.g.
identify Spotify traffic based on Spotify AS).

!12

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

Traffic Classification Lifecycle

• Based on traffic type (e.g. UDP traffic)
dissectors are applied sequentially starting with
the one that will most likely match the flow (e.g.
for TCP/80 the HTTP dissector is tried first).

• Each flow maintains the state for non-matching
dissectors in order to skip them in future
iterations.

• Analysis lasts until a match is found or after too
many attempts (8 packets is the upper-bound in
our experience).

!13

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

nDPI-based Applications: Architecture

!14

Flow Table nDPIFragment
Cache

Packet Capture
(DPDK)

Application

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

Flow Lifecycle [1/2]

• DPI-oriented applications have to deal with flows
• A flow is identified by 5+1 tuple (VLAN, proto, IP/port
src/dst).

• It is first created when the first packet is received
• Expires based on timeout or termination (FIN/RST)
• Flow packets are nDPI-processed until the protocol is
detected until a max number of iterations (unknown
protocol).

!15

Flow-Processing Application

New Flow
Flow

Expired
Packet

Classified

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

Flow Lifecycle [2/2]

• Flows are usually kept in a hash table
hashed with the 5-tuple.

• Nasty traffic (e.g. DNS) could cause several
collisions that might drive overall the
performance down.

• Performance is affected by both Mpps
(DPDK) and number of concurrent flows.

• Adding DPI in existing applications (e.g. a
traffic monitoring application) must pay
attention to flow lifecycle as much as packet
processing.

!16

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

DPDK Integration [1/2]

• nDPI is packet-capture neutral (DPDK,
PF_RING, netmap, pcap…)

• Inside nDPI/example there is an application
named ndpiReader that demonstrates how to
use the nDPI API when reading from pcap
files and DPDK.

!17

$ cd nDPI/example
$ make -f Makefile.dpdk
$ sudo ./build/ndpiReader -c 1 --vdev=net_pcap0,iface=eno1 -- -v 1

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

DPDK Integration [2/2]

!18

 while(dpdk_run_capture) {
 struct rte_mbuf *bufs[BURST_SIZE];
 u_int16_t num = rte_eth_rx_burst(dpdk_port_id, 0, bufs, BURST_SIZE);
 u_int i;

 if(num == 0) {
 usleep(1);
 continue;
 }

 for(i = 0; i < PREFETCH_OFFSET && i < num; i++)
 rte_prefetch0(rte_pktmbuf_mtod(bufs[i], void *));

 for(i = 0; i < num; i++) {
 char *data = rte_pktmbuf_mtod(bufs[i], char *);
 int len = rte_pktmbuf_pkt_len(bufs[i]);
 struct pcap_pkthdr h;

 h.len = h.caplen = len;
 gettimeofday(&h.ts, NULL);

 ndpi_process_packet((u_char*)&thread_id, &h, (const u_char *)data);
 rte_pktmbuf_free(bufs[i]);
 }
 }

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

nDPI-over-DPDK Inline Mode

• You can take any DPDK application and add
nDPI support to it

!19

for (;;) {
 RTE_ETH_FOREACH_DEV(port) {

 /* Get burst of RX packets, from first port of pair. */
 struct rte_mbuf *bufs[BURST_SIZE];
 const uint16_t nb_rx = rte_eth_rx_burst(port, 0, bufs, BURST_SIZE);

 if (unlikely(nb_rx == 0))
 continue;

 /* nDPI processing code goes here */

 /* Send burst of TX packets, to second port of pair. */
 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0, bufs, nb_rx);

 /* Free any unsent packets. */
 if (unlikely(nb_tx < nb_rx)) {
 uint16_t buf;
 for (buf = nb_tx; buf < nb_rx; buf++)
 rte_pktmbuf_free(bufs[buf]);
 }
 }
}

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

nDPI + PF_RING FT + DPDK [1/3]

• PF_RING FT is natively
integrated with nDPI for
providing L7 protocol 
information

• The application does not need to 
deal directly with the nDPI library, 
as it:
1. enables L7 detection through 
the API

2. reads the L7 protocol from 
 the exported metadata

!20

PF_RING
FT

DPDK

Flow-Processing Application

NIC

nDPI

New Flow
Flow

Expired
Packet

Classified

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

nDPI + PF_RING FT + DPDK [2/3]

!21

pfring_ft_table *ft = pfring_ft_create_table(
 flags, max_flows, flow_idle_timeout, flow_lifetime_timeout);

/* Callback for ‘new flow’ events */
pfring_ft_set_new_flow_callback(ft, new_flow_callback, user);

/* Callback for ‘packet processed/classified’ events */
pfring_ft_set_flow_packet_callback(ft, packet_processed_callback, user);

/* Callback for ‘flow to be exported’ events */
pfring_ft_set_flow_export_callback(ft, export_flow_callback, user);

…

/* Process Captured Packets */
while (1) {
 int num = rte_eth_rx_burst(port_id, 0, bufs, BURST_SIZE);
 pfring_ft_pcap_pkthdr h;
 pfring_ft_ext_pkthdr ext_hdr = { 0 };

 for (i = 0; i < num; i++) {
 char *data = rte_pktmbuf_mtod(bufs[i], char *);
 int len = rte_pktmbuf_pkt_len(bufs[i]);

 if(pfring_ft_process(ft, (const u_char *)data, &h, &ext_hdr) != PFRING_FT_ACTION_DISCARD)
 rte_eth_tx_burst(twin_port_id, 0, &bufs[i], 1);
 }
}

Full Example: https://github.com/ntop/PF_RING/blob/dev/userland/examples_ft/ftflow_dpdk.c

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

nDPI + PF_RING FT + DPDK [3/3]

!22

PF_RING
FT

DPDK

Inline Flow-Processing Application

NIC

Flow
Filtering

NIC

PF_RING

NIC

IDS/IPS

PF_RING FTFiltering Rules

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

nDPI: Packet Processing Performance: Pcap

!23

nDPI Memory statistics:
 nDPI Memory (once): 203.62 KB
 Flow Memory (per flow): 2.01 KB
 Actual Memory: 95.60 MB
 Peak Memory: 95.60 MB
 Setup Time: 1001 msec
 Packet Processing Time: 813 msec

Traffic statistics:
 Ethernet bytes: 1090890957 (includes ethernet CRC/IFC/trailer)
 Discarded bytes: 247801
 IP packets: 1482145 of 1483237 packets total
 IP bytes: 1055319477 (avg pkt size 711 bytes)
 Unique flows: 36703
 TCP Packets: 1338624
 UDP Packets: 143521
 VLAN Packets: 0
 MPLS Packets: 0
 PPPoE Packets: 0
 Fragmented Packets: 1092
 Max Packet size: 1480
 Packet Len < 64: 590730
 Packet Len 64-128: 67824
 Packet Len 128-256: 66380
 Packet Len 256-1024: 157623
 Packet Len 1024-1500: 599588
 Packet Len > 1500: 0
 nDPI throughput: 1.82 M pps / 9.99 Gb/sec
 Analysis begin: 04/Aug/2010 04:15:23
 Analysis end: 04/Aug/2010 18:31:30
 Traffic throughput: 28.85 pps / 165.91 Kb/sec
 Traffic duration: 51367.223 sec
 Guessed flow protos: 0

Single Core (E3 1241v3)

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

nDPI: Packet Processing Performance: Live Capture

• 10 Gbit tests on Intel E3-1230 v5 3.4GHz DDR4 2133
• 100 Gbit tests on 2x Intel E5-2630 v2 2.6GHz DDR3 1600

(much slower than modern Xeon Scalable)
• nDPI integrated in a flow monitoring application (nProbe

Cento)

!24

Traffic Capture
Card

Number of
Cores

Per Core
Performance

All Cores
Performance

10 Gbit / 64-byte packets Intel 10G
(X520) 1 14.8 Mpps / 10 Gbps 14.8 Mpps / 10 Gbps

100 Gbit / 1-kbyte packets FPGA 100G 1 10.8 Mpps / 90 Gbps 10.8 Mpps / 90 Gbps

100 Gbit / 1-kbyte packets FPGA 100G 4 2.8 Mpps / 24 Gbps 11.5 Mpps / 96 Gbps

100 Gbit / 64-byte packets FPGA 100G 4 11.2 Mpps / 7.6 Gbps 45.2 Mpps / 30.4 Gbps

100 Gbit / 64-byte packets FPGA 100G 6 + 6 (2 CPUs) 10.8 Mpps / 7.3 Gbps 130 Mpps / 87.6 Gbps

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

nDPI and Intel HyperScan.io

• Hyperscan is a high-performance regex
matching library that can be used in nDPI
instead of the native Aho-Corasick (configure
--with-hyperscan)

• String matching is used in protocol detection.

!25

nDPI Memory statistics:
 nDPI Memory (once): 203.62 KB
 Flow Memory (per flow): 2.01 KB
 Actual Memory: 95.60 MB
 Peak Memory: 95.60 MB
 Setup Time: 1001 msec
 Packet Processing Time: 813 msec

nDPI Memory statistics:
 nDPI Memory (once): 203.62 KB
 Flow Memory (per flow): 2.01 KB
 Actual Memory: 95.61 MB
 Peak Memory: 95.61 MB
 Setup Time: 11 msec
 Packet Processing Time: 835 msec

Aho-CorasickHyperScan

Note: same test of slide 23 with HyperScan and Aho-Corasick

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

Evaluating nDPI
• nDPI has been evaluated both in terms of
accuracy and performance.

• “The best accuracy we obtained from nDPI
(91 points), PACE (82 points), UPC MLA (79
points), and Libprotoident (78 points)”

• Source: T. Bujlow, V. Carela-Español, P.
Barlet-Ros, Comparison of Deep Packet
Inspection (DPI) Tools for Traffic
Classification, Technical Report, June 2013.

!26

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

Final Remarks
• We have presented nDPI an open source
DPI toolkit able to detect many popular
Internet protocols and scale at 10 Gbit on
commodity hardware platforms.

• Its open design make it suitable for using it
both in open-source and security applications
where code inspection is compulsory.

• Code Availability (GNU LGPLv3) 
https://github.com/ntop/nDPI

!27

DPDK Summit North America 2018 - Dec 3-4, 2018, San Jose, CA

Acknowledgment
• I would like to thank the Intel Software
Innovator Program for supporting the
development of nDPI

!28

