

Accelerating Para-Virtual I/O with CBDMA

Para-Virtual I/O

- Para-virtual I/O is a virtualization technique to enhance VM I/O performance.
- VirtIO is a standard of para-virtual I/O, which consists of VirtIO front-end in VM and backend in hypervisor.
- Backend exchanges data with front-end via copying packet buffers between host and VM memory.

The overhead of **copying large bulk of data** makes the **backend** become the **I/O bottleneck**.

- Crystal Beach DMA (CBDMA) is a DMA engine in the processor, which is extremely efficient in performing memory copy operations.
- No CPU intervention during data transfer.

Challenges of using CBDMA to accelerate the backend:

- NUMA
- Copy buffer length
- CPU-CBDMA cooperation pipeline

• Influence from CBDMA and memory NUMA nodes

NUMA – Local:

CBDMA and Memory in same node.

NUMA – Min Remote:

CBDMA and SRC Memory in same node, DST memory in another node.

NUMA – Max Remote:

CBDMA and Memory in different nodes.

• Influence from CBDMA and memory NUMA nodes

CBDMA and memory in same NUMA node improves throughput 4% ~ 13%.

CPU and CBDMA in the same NUMA node.

Influence from CBDMA and CPU NUMA nodes

NUMA – Local: **CBDMA** and **CPU** in **same** node.

NUMA – Remote: **CBDMA** and **CPU** in **different** nodes.

Memory and CBDMA in the same NUMA node.

Influence from CBDMA and CPU NUMA nodes

NUMA - Local NUMA - Remote

 CPU and CBDMA in same NUMA node improves throughput 16% ~ 66%.

CPU, memory and CBDMA locate **closer**, CBDMA achieve **higher** performance.

Memory and CBDMA in the same NUMA node.

Cache2mem Mem2mem
CBDMA NUMA - Local CBDMA NUMA-Remote

CBDMA NUMA-Local: CBDMA copy & CBDMA and CPU in **same node**.

CBDMA NUMA–Remote: CBDMA copy & CBDMA and CPU in **different nodes**.

CBDMA NUMA-local vs. CPU

CBDMA NUMA - Local

CBDMA NUMA-Remote

When lengths exceed
 1024 B and 2048 B, CBDMA
 NUMA-local outperforms
 CPU.

CBDMA NUMA-remote vs. CPU

Cache2mem Mem2mem CBDMA NUMA - Local CBDMA NUMA-Remote When lengths exceed
 2048 and 3072 B, CBDMA
 NUMA-remote outperforms
 CPU.

CBDMA vs. CPU

Cache2mem
 CBDMA NUMA - Local
 CBDMA NUMA-Remote

 When lengths are smaller than **1024 B**, CPU outperforms CBDMA.

CBDMA achieves **higher** performance with **larger** copy lengths.

• NUMA-aware resource assignment scheme

- Dynamically assign CPU, memory and CBDMA devices, according to resource status.
- Working in progress.
- Increase packet lengths via enabling TCP Segmentation
 Offload (TSO) and UDP Fragmentation Offload (UFO).
 - E.g. 1.5 KB \rightarrow 64 KB TCP packets
- Adaptive CPU-CBDMA Pipeline

One enqueue/ dequeue operation

exist unprocessed descriptors

Copy pipeline

- Min_Len_NL is the minimal length that CBDMA outperforms CPU, when in the same NUMA node.
- Min_Len_NR is the minimal length that CBDMA outperforms CPU, when in different NUMA nodes.

• Set *Min_Len_NL* and *Min_Len_NR* to 2048 and 3072 bytes.

CPU	Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz
Testpmd Information	1 core
VM Information	4 cores pre VM 1GB Huge-page Enable TSO 1 queue
lperf	TCP packet size is 64 KB
CPU cores, CBDMA and memory locate in NUMA node 0.	

 Use 1 GB huge-page to mitigate the address translation overhead, i.e. GPA to HPA.

Results

CBDMA – 4 KB MBUF: Testpmd mbuf size is 4 KB.

CBDMA – 8 KB MBUF: Testpmd mbuf size is 8 KB.

Results

• Using 4 KB mbuf, CBDMA improves throughput up to 30%.

Results

 Using 8 KB mbuf, CBDMA improves throughput up tp 37%.

Thanks

jiayu.hu@intel.com