

Shaping the future of IP Broadcasting with Cisco's vMI and DPDK on Windows

MICHAEL O'GORMAN, DISTINGUISHED ENGINEER, CISCO HARINI RAMAKRISHNAN, PROGRAM MANAGER, MICROSOFT

Agenda

- Video Broadcasting industry transition
- Cisco's vMI introduction
- How DPDK on Windows solves data rate problems
- Cisco's vMI-DPDK solution
- Demo
- Code Availability
- Roadmap
- Q&A

Media Broadcasting Evolution

Past: Live media production houses embraced technological changes spanning many decades in adoption.

- From black-and-white to color television transition in the 1950s and 60s
- Analog -> Digital video signals through 1980s
- To standard definition(SD) -> high definition (HD) transition in the 2000s,

- yet, **Today:** An unprecedented, accelerated transition in the media industry is underway
 - As 4K/UHD and 8K resolutions in the future become a fundamental part of the broadcast landscape.

IP Networking for Media Broadcasters

- Television and Live media broadcasting houses are migrating:
 - Replacing legacy, domain based Serial Digital Interface (SDI) fabrics
 - To IP-based virtualized environment and infrastructure.
 - Using SMPTE protocols
- Motivation
 - Future-proofing the infrastructure to meet increasing bandwidth demands.
 - > 4K, 8K bit rates cannot be carried by existing infrastructure.
 - Leverage benefits of the cloud
 - Do away with dedicated equipment
 - Rapidly scale to new technologies.
 - IP over ethernet spans large distances and can be encrypted.

Evolution of Television Resolution

Windows DPDK for Video Broadcasting

- Available today is Cisco's virtual media interface (vMI) software toolkit open sourced as "Herisson"
 - Aids media software vendors transitioning from SDI to IP/Ethernet workflows.
 - Today vMI stack is optimized for legacy SDI workflows.
- Ever Increasing Data Rate Challenge:
 - Data Rates of SMPTE and IP-based media frames exceed the capacity of today's Operating Systems IP stacks.

Single HD Video Stream	Single HDR 4K Stream
1.5Gb/s	Up to 12Gb/s

- · With IP frames, vMI libraries need efficient path to the NICs to realize capacity at parity with legacy SDI workflows.
- Cisco-Microsoft-Intel jointly announcing highly optimized vMI libraries with DPDK on Windows.
 - Software Networking kit to support media workflows on an ethernet network, on Windows Server Operating System.
 - Windows continues to be the Operating System of Choice for many media software vendors with strong graphics and GPU driver support.
- · Cisco vMI library planned for use in multiple end-customer products and broadcaster solutions.

Introduction to SMPTE standards

- SMPTE is a set of standards addressing transport of uncompressed media over IP.
- Historically, largely derived from SDI standards.
- All based on RTP protocol.
- SMPTE mandates strict packet timing requirements.

Introduction to vMI(virtual Media Interface) Today

- A set of high-performance open source software tools that processes media IP streams on x86 (Linux/Windows).
- Virtual SDI Card for software appliances.
- Enables virtual SMPTE-stream analysis in virtualized workflow.
- Enables SMPTE traffic pacing.

Challenges with IP network.

- SMPTE standard based on RTP meaning that there is no flow control.
- Media processing is a real time process.
- IP transport is mission critical → must not loose a single packet.
- Traditional operating systems are implementing best effort strategy.

Video Broadcasting and Windows DPDK

How Windows DPDK solves the data rate challenge DPI

Multiple streams of high-quality video broadcast with low latency

Before DPDK	With DPDK
limited to 5 HD (1080p 60 fps) streams representing ~8Gbps max	With DPDK, saturate 40Gbps link with 25 HD streams with scale-up expected to 100Gbps (5X increase)

Current Stack

Kernel **UIO** component

DPDK Accelerated Stack

As high-quality video increases from 4K to 8K and beyond, the video broadcasting industry needs a scalable solution using IP and virtualization.

Standard Name	IEEE Standard	# ports	Per Port speed
Dual HD SDI	SMPTE 372 M	2	1.5 Gbps each
3G (1080p60)	SMPTE 424	any	2.97 Gbps
6G (2160p30)	SMPTE.ST2081	any	~6 Gbps
12G (2160p60)	SMPTE.ST2082	any	~12 Gbps

Demo

Code Availability

vMI

- Open Source vMI library for Windows with DPDK to be available in December 2018!!
- · Visit <u>Herisson repo</u> on Github.

Windows DPDK

 Cisco's DPDK patch to support vMI libraries available in branch windpdk-v17.11-rc2.

Call to Action: Download, Build, and Run apps with vMI and DPDK on Windows!

DPDK on Windows – Current Status

- Announced Windows support for DPDK libraries at the DPDK Summit in December 2017, demoed over 70+ Million packets per second!
- The Windows DPDK draft repo updated to align with v18.08 public release.
- Windows DPDK branch windpdk-v17.11.rc2, windpdk-v18.02 validated on Windows Server 2016 and Windows Server 2019 with Intel 40GbE network adapters.
 - Essential libraries and toy applications compiled and working on Windows.
- Intel now supports DPDK Poll Mode Drivers (PMD) for Windows native host.
- Windows Poll Mode drivers from Chelsio, Cavium and Broadcom are under development.

DPDK on Windows – Goals and Vision

- Upstreaming Windows DPDK patches in the main repository.
 - Expect phased upstreaming of Windows DPDK core libraries through 2019.
- Support for alternative compilers such as clang.
- More secure, multi-process/multi-user driver model to expose the device to user-mode applications.
 - In-depth look at next session from colleagues at Microsoft and Intel.
- Ensure all DPDK libraries and APIs are fully functional on Windows.
- Future Investigations:
 - Support DPDK in a Windows VM
 - Moving from Native Host to Guest with Direct Device Assignment (DDA) and eventually using a Guest VF
 - Support for Packet Pacing.
 - Core Isolation and reservation with Windows scheduler.

Thank You Contributors!

- Cisco: Thierry Gruszka, Andre Surcouf, Axel Taldir
- Intel: Ranjit Menon, Manasi Deval, Elizabeth Kappler, Miles Penner and Pallavi Kadam
- Microsoft: Jason Messer, Omar Cardona, Jeff Tippett
- Harini Ramakrishnan < Harini.Ramakrishnan@microsoft.com >
- Michael O'Gormon < micogorm@cisco.com >

Questions?

