@ DATA PLANE DEVELOPMENT KIT

Arm’s Effort For DPDK and Future Plan

Relaxed memory ordering

- __syncvs. __atomic

- WFE and SEV for v8.0

- Atomic instructions for V8.1
Neon Optimization
Build system and Documentation
DTS internal CI

C11 memory ordering @ DPDK

Aarch64 is relaxed memory ordering
Program order might be broken for performance optimization

By HW
By compiler

This memory reordering is transparent to programmers most of time

Still there are use cases the program order should be kept, especially for multi-
core/thread execution environments.

That is why memory fences are introduced

Memory fences degrade performance
Use less restrictive memory ordering model as possible to mitigate the degradation

Relaxed memory ordering @ Sad

Work done So far - Remove memory fences in the

. KNI wrong places

- Ring - Lessen the barriers to make them

- Hash as weak as possible

Future Work - Ensure correctness(multi-core safe)

» Vhost by synchronizing to the correct

- Virtio points.

- ring

__sync vs __atomic

2)DPDK

- Benefits of __atomic
- Full memory barrier >one-way barrier.
- Benchmarking shows constant improvements.

(gdb) disassemble /s rte_spinlock_

Dump of assembler code for function rte_spinlock lock:
0x0000000000468434 <+0>: mov wl, #0x1
0x0000000000468438 <+4>: ldxr w2, [x0]
0x000000000046843¢c <+8>: stxr w3, wl, [x0]

/1 #1

0x0000000000468440 <+12>: chnz w3, 0x468438 <rte_spinlock_lock+4>

0x0000000000468444 <+16>: dmb ish

0x0000000000468448 <+20>: chz w2, 0x46845c <rte_spinlock_lock+40>

0x000000000046844¢ <+24>: ldr w2, [x0]

0x0000000000468450 <+28>: chz w2, 0x468438 <rte_spinlock_lock+4>

0x0000000000468454 <+32>: yield

0x0000000000468458 <+36>: b 0x46844c <rte_spinlock_lock+24>

0x000000000046845¢ <+40>: ret
End of assembler dump.

20000

80000

70000

60000

50000

40000

30000

20000

10000

__sync vs __atomic

if

armé4 #1 armé4 #2 armé4 #1 armé4 #2
rwlock rwlock spinlock spinlock

E__sync ®__atomic

WFE and SEV for V8.0

9 DATA PLANE DEVELOPMENT KIT

WFE

Suspend execution when the

lock is held

Get wake up events if the
exclusive monitor is cleared by

other PEs
SEV

Send event explicitly to break

WFE

Use cases
Spinlock
Rw lock
Ring
Other acquire/release
semantics environments

Lock acquire and
release count / time

300000
250000
200000
150000
100000
50000
0

B spinlock ® atomic spinlock+wfe

PE PE

2:wfe
Local Local

monitor monitor

4: wake up

3:store
release

AXi Interconnect
3X Hoad L+ /
exclusive Clobd!
I Monitor
[

armé4 #1 armé4 #2

Rte atomicN_xxx for V8.1) DPDK

DATA PLANE DEVELOPMENT KIT

DPDK atomic implementation

rte_atomicN_xxx APls are implemented using __sync built-ins.

These translate to retry loops with load/store exclusive instructions.

Proposed patches

V8.1 ISA adds atomic instructions in atomic
memory operations class.

t
rte_atomicN_xxx APIs will be changed to use o

these new instructions.

L =) DPDK
Neon optimizations @

Library(Planned) PMD
Vhost lib - Intel NIC PMD ready by Arm
rte_ethdev lib - Mellonax PMD ready by MLX
rte hash - More to come

Examples
L3fwd ready

More to come

Build system and Documentation @ DPDK

Make Documentation
Gcece / clang _
Native / Cross User guides
Configuration settings - Programming guide

Meson/Ninja

Native
Clang
Configurations

DTS and Internal CI @ DPDK

- Work done so far
|ldentify DTS test cases suitable for Arm platform
Enable DTS test cases on arm64
Integrated into internal Cl

- Future work
Add More cases

Integrated into community lab

Key Takeaways 2)DPDK

Relaxed memory model and examples of optimization
More performant, scalable rwlock, spinlock, rte ring, atomic APls

Neon optimization examples

Arm’s efforts to DPDK
and Future Plan

Thanks!

- BackUp

NEON for AArch64) DPDK

An extension to the AArch64 instruction set derived from the AArch32 Advanced SIMD syntax

Same data processing principles
Registers are considered as vectors of elements of the same data type

Data types available: signed and unsigned 8-bit, 16-bit, 32-bit, 64-bit, single and double
precision floating point

Instructions usually perform the same operation in all lanes

Source
: : " Registers
Elements i : T e /—
te le K | vin .
H_'_fkl%l’kl%l' | Operation
Destination
I i | | va Register
v v

KNI optimization @ DPDK

Kernel Module User Space
Fix the synchronization issues using - Fix the synchronization issues using C11
kernel SMP barriers memory model _ atomic builtins

Spin lock @ DPDK

- __atomic instead of ___sync builtin
Full memory barrier > one-way barrier

- SEV and WFE
Tight loop = suspend execution
Less stress to memory subsystem
Less power

Rw lock @ DPDK

- ___atomic instead of ___sync builtin
Full memory barrier ->one-way barrier

- SEV and WFE

Tight loop = suspend execution
Less stress to memory subsystem
Less power

Vhost/virtio optimization Plan B

Relaxed memory ordering
Spinlock and rwlock
Prefetch

Neon optimization

Fixes Optimization

- Synchronization to tail update

- Keep deterministic order allowing the
CAS retry to work

Relaxed ordering for load and store of head
Remove duplicate atomic loads

More to come...

- Set Weak = true to allow spurious
failure

- Replace rte_pause with “WFE”
instruction, when updating tails.

