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Agenda

• Relaxed memory ordering

• __sync vs. __atomic

• WFE and SEV for v8.0

• Atomic instructions for V8.1

• Neon Optimization

• Build system and Documentation

• DTS internal CI
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C11 memory ordering

• Aarch64 is relaxed memory ordering

• Program order might be broken for performance optimization
• By HW
• By compiler

• This memory reordering is transparent to programmers most of time

• Still there are use cases the program order should be kept, especially for multi-
core/thread execution environments.

• That is why memory fences are introduced

• Memory fences degrade performance
• Use less restrictive memory ordering model as possible to mitigate the degradation
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Relaxed memory ordering

• Work done So far
• KNI

• Ring

• Hash

• Future Work
• Vhost

• Virtio

• ring

• Remove memory fences in the 
wrong places

• Lessen the barriers to make them 
as weak as possible

• Ensure correctness(multi-core safe) 
by synchronizing to the correct 
points.
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__sync  vs __atomic 

• Benefits of __atomic
• Full memory barrier one-way barrier.
• Benchmarking shows constant improvements.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

arm64 #1
rwlock

arm64 #2
rwlock

arm64 #1
spinlock

arm64 #2
spinlock

__sync vs __atomic

__sync __atomic



6

WFE and SEV for V8.0

• WFE
• Suspend execution when the 

lock is held
• Get wake up events if the 

exclusive monitor is cleared by 
other PEs

• SEV
• Send event explicitly to break 

WFE

• Use cases
• Spinlock
• Rw lock
• Ring
• Other acquire/release 

semantics environments
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Rte_atomicN_xxx for V8.1

• rte_atomicN_xxx APIs are implemented using __sync built-ins. 

• These translate to retry loops with load/store exclusive instructions.

DPDK atomic implementation

• V8.1 ISA adds atomic instructions in atomic 

memory operations class.

• rte_atomicN_xxx APIs will be changed to use 

these new instructions.

Proposed patches
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cmp

ldaddretry
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Neon optimizations

Examples

• Vhost lib

• rte_ethdev lib
• rte_hash

PMD
• Intel NIC PMD ready by Arm

• Mellonax PMD ready by MLX

• More to come

Library(Planned)

• L3fwd ready

• More to come
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Build system and Documentation

• Gcc / clang

• Native / Cross

• Configuration settings

Meson/Ninja

• Native

• Clang

• Configurations

Make 

• User guides

• Programming guide

Documentation
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DTS and Internal CI

• Work done so far
• Identify DTS test cases suitable for Arm platform

• Enable DTS test cases on arm64

• Integrated into internal CI

• Future work

• Add More cases

• Integrated into community lab
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Key Takeaways

• Relaxed memory model and examples of optimization

• More performant, scalable rwlock, spinlock, rte ring, atomic APIs

• Neon optimization examples
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NEON for AArch64

• An extension to the AArch64 instruction set derived from the AArch32 Advanced SIMD syntax

• Same data processing principles

• Registers are considered as vectors of elements of the same data type

• Data types available: signed and unsigned 8-bit, 16-bit, 32-bit, 64-bit, single and double 
precision floating point

• Instructions usually perform the same operation in all lanes
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KNI optimization

Kernel Module 
• Fix the synchronization issues using 

kernel SMP barriers

User Space
• Fix the synchronization issues using C11 

memory model __atomic builtins
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Spin lock

• __atomic instead of __sync builtin
• Full memory barrier one-way barrier

• SEV and WFE
• Tight loop  suspend execution

• Less stress to memory subsystem

• Less power
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Rw lock

• __atomic instead of __sync builtin
• Full memory barrier one-way barrier

• SEV and WFE
• Tight loop  suspend execution

• Less stress to memory subsystem

• Less power
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Vhost/virtio optimization Plan

• Relaxed memory ordering

• Spinlock and rwlock

• Prefetch 

• Neon optimization
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ring

Fixes

• Synchronization to tail update

• Keep deterministic order allowing the 
CAS retry to work

Optimization

• Relaxed ordering for load and store of head

• Remove duplicate atomic loads

More to come…

• Set Weak = true to allow spurious 
failure

• Replace rte_pause with “WFE” 
instruction, when updating tails.


