
x

Arm’s Effort For DPDK and Future Plan

GAVIN HU
HONNAPPA NAGARAHALLI

ARM



Agenda

• Relaxed memory ordering

• __sync vs. __atomic

• WFE and SEV for v8.0

• Atomic instructions for V8.1

• Neon Optimization

• Build system and Documentation

• DTS internal CI



3

C11 memory ordering

• Aarch64 is relaxed memory ordering

• Program order might be broken for performance optimization
• By HW
• By compiler

• This memory reordering is transparent to programmers most of time

• Still there are use cases the program order should be kept, especially for multi-
core/thread execution environments.

• That is why memory fences are introduced

• Memory fences degrade performance
• Use less restrictive memory ordering model as possible to mitigate the degradation



4

Relaxed memory ordering

• Work done So far
• KNI

• Ring

• Hash

• Future Work
• Vhost

• Virtio

• ring

• Remove memory fences in the 
wrong places

• Lessen the barriers to make them 
as weak as possible

• Ensure correctness(multi-core safe) 
by synchronizing to the correct 
points.



5

__sync  vs __atomic 

• Benefits of __atomic
• Full memory barrier one-way barrier.
• Benchmarking shows constant improvements.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

arm64 #1
rwlock

arm64 #2
rwlock

arm64 #1
spinlock

arm64 #2
spinlock

__sync vs __atomic

__sync __atomic



6

WFE and SEV for V8.0

• WFE
• Suspend execution when the 

lock is held
• Get wake up events if the 

exclusive monitor is cleared by 
other PEs

• SEV
• Send event explicitly to break 

WFE

• Use cases
• Spinlock
• Rw lock
• Ring
• Other acquire/release 

semantics environments

PE

L1$

AXI Interconnect

L1$

Global 
Monitor

Memory

Local 
monitor

PE

Local 
monitor

0

50000

100000

150000

200000

250000

300000

arm64 #1 arm64 #2

Lock acquire and 
release count / time

spinlock atomic spinlock+wfe

3X 1:Load 
exclusive

2:wfe

3:store 
release

4: wake up 
& own the 
lock



7

Rte_atomicN_xxx for V8.1

• rte_atomicN_xxx APIs are implemented using __sync built-ins. 

• These translate to retry loops with load/store exclusive instructions.

DPDK atomic implementation

• V8.1 ISA adds atomic instructions in atomic 

memory operations class.

• rte_atomicN_xxx APIs will be changed to use 

these new instructions.

Proposed patches

ldxr

stxr

cmp

ldaddretry



8

Neon optimizations

Examples

• Vhost lib

• rte_ethdev lib
• rte_hash

PMD
• Intel NIC PMD ready by Arm

• Mellonax PMD ready by MLX

• More to come

Library(Planned)

• L3fwd ready

• More to come



9

Build system and Documentation

• Gcc / clang

• Native / Cross

• Configuration settings

Meson/Ninja

• Native

• Clang

• Configurations

Make 

• User guides

• Programming guide

Documentation



10

DTS and Internal CI

• Work done so far
• Identify DTS test cases suitable for Arm platform

• Enable DTS test cases on arm64

• Integrated into internal CI

• Future work

• Add More cases

• Integrated into community lab



11

Key Takeaways

• Relaxed memory model and examples of optimization

• More performant, scalable rwlock, spinlock, rte ring, atomic APIs

• Neon optimization examples



Arm’s efforts to DPDK 
and Future Plan

Thanks！
Gavin Hu

gavin.hu@arm.com

Honnappa Nagarahalli

Honnappa.Nagarahalli@arm.com



• BackUp



14

NEON for AArch64

• An extension to the AArch64 instruction set derived from the AArch32 Advanced SIMD syntax

• Same data processing principles

• Registers are considered as vectors of elements of the same data type

• Data types available: signed and unsigned 8-bit, 16-bit, 32-bit, 64-bit, single and double 
precision floating point

• Instructions usually perform the same operation in all lanes

Vn

Vm

Vd

Lane

Source 
Registers
Source 
Registers

Operation

Destination 
Register

ElementsElementsElements



15

KNI optimization

Kernel Module 
• Fix the synchronization issues using 

kernel SMP barriers

User Space
• Fix the synchronization issues using C11 

memory model __atomic builtins



16

Spin lock

• __atomic instead of __sync builtin
• Full memory barrier one-way barrier

• SEV and WFE
• Tight loop  suspend execution

• Less stress to memory subsystem

• Less power



17

Rw lock

• __atomic instead of __sync builtin
• Full memory barrier one-way barrier

• SEV and WFE
• Tight loop  suspend execution

• Less stress to memory subsystem

• Less power



18

Vhost/virtio optimization Plan

• Relaxed memory ordering

• Spinlock and rwlock

• Prefetch 

• Neon optimization



19

ring

Fixes

• Synchronization to tail update

• Keep deterministic order allowing the 
CAS retry to work

Optimization

• Relaxed ordering for load and store of head

• Remove duplicate atomic loads

More to come…

• Set Weak = true to allow spurious 
failure

• Replace rte_pause with “WFE” 
instruction, when updating tails.


