DPDK Integration
within F5 BIG-IP

F5 Company Snhapshot

DPDK

DATA PLANE DEVELOPMENT KIT

2

$2,090
$1.020 $1,995
Founded: 1996 $1.732
Revenues §1377 $1481
IPO: June 1999 in Millions $1,152
. $882
Employees: 4,395 S0 555
Headquarters: Seattle, WA J I I
PreSIdent and CEO: FrangOIS LOCOh-Donou FYO7 FY08 FY09 FY10 FY11 FY12 FY13 FY14 FY15 FY16 FY17
Market symbol: FFIV (NASDAQ) (s) S
Operations worldwide: 32 countries L St 0i10 FORTUNE
Commercial Banks of US Cabinet Insurance Companies
10v.-“.10 15/15 9 I 50
- = Fortune 50
companies
@ ill]
9/10 10/10 10/10
Global Automotive US Secunty Telecommunications
Companies Companies Companies

tmm — Traffic Management Microkernel @ DPDK

r’:@:‘\

Cllent/ Server

MOdUIar L2'L7 fU” prOxy Application monrtonngand
User programmable HTTP Proxy, HTTP DDoS and
Zero copy whenever possible Sl e o sl
Packet models: e
Irewa ulls ui policy
Native poll mode PCI drivers e“f°r°e’“e"t“c'°°p“’“'za“°“
Raw socket via kernel PhyS|caI
DPDK 4
—~@/ \@—=
— —

3

Userland process in Linux

Cllent/ Server

xnet: Integrating DPDK with tmm 2 DPDK

VE tmm

Sits between the Iifne’r
tmm and DPDK to ~dal
Isolate changes

Raw : Native Native Native

unic) .. xnet
sockets IX|v vmxnet3 virtio

DPDK is not aware
of the tmm

The tmm is not

aware of DPDK Cernal xnet library

Network drivers

A closer look at tmm/xnet/DPDK

2

DPDK

DATA PLANE DEVELOPMENT KIT

VE tmm

y

A

xnet driver

APIs:
+ get_version()
+ init()/deinit()

+ aftach_dev()/detach_dev()
+ poll_xqg()/poll_txq()/poll_crr()

\ 4

Callbacks:

hp_alloc()/hp_free|)

xnet library

DPDK

shmem

xnet device
(allocated by lib)

PCI coordinates
Queue info
Offload features
MAC/VLAN filters

Link status

Ethernet address

Confrol registers

\ A 4

Tx queues
(allocated by

QO request ring

QO completion ring

QO stats
Q1 request ring
Q1 completion ring

Q1 stats

Rx queues
(allocated by

QO request ring
QO completion ring
QO stats

Q1 request ring

Q1 completion ring

Q1 stats

Challenge #1: Foreign Memory Import AP| @ DPDK

- The tmm manages all hugepages in system
- The tmm has its own purpose built memory manager
DPDK runs within the same process as the tmm

DPDK assumes it owns all hugepages — but it doesn’t / cannot!

Solution: Tmm will feed hugepages to DPDK before doing

rte_eal init() providing it with the list the hugepages DPDK can
own

Challenge #2: Zero-copy retaining mbuf and xfrag @ bEDK

DPDK uses mbuf structures but tmm uses xfrags
Both contain effectively the same fields because they do the same thing

We could convert one to the other — but this defeats zero copy and hurts
performance

We don’t want to change all of tmm to use mbufs — but don’t want to
maintain a patch against DPDK to do the opposite

Solution: Tweak DPDK's external mempool handler to attach xfrags to
mbuf's payload and translate mbuf header to xfrag header — Rx and
xfrag header to mbuf header - Tx

@ DATA PLANE DEVELOPMENT KIT

Challenge #3: Contiguous Hugepages

DPDK normally acquires hugepages from Linux
It then mmap()s them into a contiguous address space

- When inside of tmm, we skip that

- tmm then sets aside some hugepages, sorts the physical pages,
and remaps to a contiguous virtual space

Challenge #4: mbuf cache 2 DPDK

Freed Tx xfrags need to be freed to TMM ASAP.

So we had to TURN OFF the mbuf cache

Performance degrades with more rx/tx queues like 16 each
Solution: Implement an mbuf cache in xnet_lib layer

Proposal: DPDK to support freeing of mbuf payload while still
maintaining the mbufs in the cache.

Challenge #5: Allocating and Freeing Buffers @ DPDK

DPDK and the tmm have incompatible models for allocating and
freeing buffers:

- DPDK wants to allocate a bunch of buffers up front

- DPDK wants to free buffers in bulk

- The tmm expects the opposite of these

Solution: use xnet library to coalesce behaviors to insulate tmm
and DPDK from each other

Challenge #6: DPDK drivers with dependencies @ DPDK

- Some NICs can be driven by DPDK without external dependencies
Easy to enable for evaluation
Easy to integrate into our build system
Easy to upgrade DPDK library
Easy to track errata & vulnerabilities, minimizes our surface
Simple licensing (no need to involve lawyers)

- Others require external kernel modules and libraries
Opposite of all above points

Dealing with this is more work than writing our own driver in some cases,
and it doesn’t even perform as well!

Thank You!

Q&A

