
x

DPDK Integration

within F5 BIG-IP
BRENT BLOOD, SR MANAGER SOFTWARE ENGINEERING

VIJAY MANICKAM, SR SOFTWARE ENGINEER



2

F5 Company Snapshot

Founded: 1996

IPO: June 1999

Employees: 4,395

Headquarters: Seattle, WA

President and CEO: François Locoh-Donou

Market symbol: FFIV (NASDAQ)

Operations worldwide: 32 countries



3

tmm – Traffic Management Microkernel

• Userland process in Linux

• Modular L2-L7 full proxy

• User programmable

• Zero copy whenever possible

• Packet models:

• Native poll mode PCI drivers

• Raw socket via kernel

• DPDK



4

xnet: Integrating DPDK with tmm

• Sits between the 

tmm and DPDK to 

isolate changes

• DPDK is not aware 

of the tmm

• The tmm is not 

aware of DPDK

xnet
Native 

virtio

Native 

vmxnet3

Native 

ixlv
unic

Raw 

sockets

ndal

ifnet

VE tmm

Kernel

Network drivers

Guest

Host

xnet library

DPDK



5

A closer look at tmm/xnet/DPDK

xnet driver

VE tmm

APIs:

• get_version()

• init()/deinit()

• attach_dev()/detach_dev()

• poll_rxq()/poll_txq()/poll_crr()

Callbacks:

• hp_alloc()/hp_free()

DPDK

xnet library

xnet device 

(allocated by lib)

PCI coordinates

Queue info

Offload features

MAC/VLAN filters

Ethernet address

Control registers

Rx queues

(allocated by 

tmm)

Q0 request ring

Q0 completion ring

Q0 stats

Q1 request ring

Q1 completion ring

Q1 stats

…

Tx queues

(allocated by 

tmm)

Q0 request ring

Q0 completion ring

Q0 stats

Q1 request ring

Q1 completion ring

Q1 stats

…

Link status

shmem



6

Challenge #1: Foreign Memory Import API

• The tmm manages all hugepages in system

• The tmm has its own purpose built memory manager

• DPDK runs within the same process as the tmm

• DPDK assumes it owns all hugepages – but it doesn’t / cannot!

• Solution: Tmm will feed hugepages to DPDK before doing 

rte_eal_init() providing it with the list the hugepages DPDK can 

own



7

Challenge #2: Zero-copy retaining mbuf and xfrag

• DPDK uses mbuf structures but tmm uses xfrags

• Both contain effectively the same fields because they do the same thing

• We could convert one to the other – but this defeats zero copy and hurts 

performance

• We don’t want to change all of tmm to use mbufs – but don’t want to 

maintain a patch against DPDK to do the opposite

• Solution: Tweak DPDK’s external mempool handler to attach xfrags to 

mbuf’s payload and translate mbuf header to xfrag header – Rx and 

xfrag header to mbuf header - Tx



8

Challenge #3: Contiguous Hugepages

• DPDK normally acquires hugepages from Linux

• It then mmap()s them into a contiguous address space

• When inside of tmm, we skip that

• tmm then sets aside some hugepages, sorts the physical pages, 

and remaps to a contiguous virtual space



9

Challenge #4: mbuf cache

• Freed Tx xfrags need to be freed to TMM ASAP.

• So we had to TURN OFF the mbuf cache

• Performance degrades with more rx/tx queues like 16 each

• Solution: Implement an mbuf cache in xnet_lib layer

• Proposal: DPDK to support freeing of mbuf payload while still 

maintaining the mbufs in the cache.



10

Challenge #5: Allocating and Freeing Buffers

• DPDK and the tmm have incompatible models for allocating and 

freeing buffers:

• DPDK wants to allocate a bunch of buffers up front

• DPDK wants to free buffers in bulk

• The tmm expects the opposite of these

• Solution: use xnet library to coalesce behaviors to insulate tmm

and DPDK from each other



11

Challenge #6: DPDK drivers with dependencies

• Some NICs can be driven by DPDK without external dependencies

• Easy to enable for evaluation

• Easy to integrate into our build system

• Easy to upgrade DPDK library

• Easy to track errata & vulnerabilities, minimizes our surface

• Simple licensing (no need to involve lawyers)

• Others require external kernel modules and libraries

• Opposite of all above points

• Dealing with this is more work than writing our own driver in some cases, 

and it doesn’t even perform as well!



Thank You!

Q & A


