Supporting Cloud Native with

DPDK and containers

Making Applications Cloud Native Friendly @ DPDK

- How can we make DPDK Cloud Native Friendly?
Reduce startup resources for quicker startup
Make it simpler to startup and run a DPDK application
Make it easy to monitor the application
Make it easy to configure the application during runtime
Make it easy to attach/detach hardware
Make it easy to create new virtual interfaces

Make it easy for non-DPDK applications to connect to DPDK owned
hardware

What can DPDK do?) DPDK

Needs to have less command line options

Needs to be configurable at runtime

Easy to configure during runtime

Easy for orchestration to change and monitor DPDK apps
Simpler set of APIs for non-DPDK experts to use in applications

Improve performance for data movement to/from containers

Simplify DPDK Startup 2)DPDK

Command lines are great for developers not so much for others

Simplify required command line options

Needs to startup quickly with minimum resources
lcores, memory/hugepages, devices, threads, ...
Can we make DPDK startup with just a thread
- Then add the resources to DPDK as needed via a runtime configuration

What does DPDK need to make this happen

Dynamic DPDK Resources @ DEDR

If DPDK started with minimum resources we need to have ways to add
these resources at runtime

DPDK needs to have dynamic lcore support
- We need to add support to add/remove Icores at runtime
- We have a PoC that is able to add/remove Icores

Memory resources in DPDK is coming along nicely and Anatoly has done
a great job in reworking DPDK memory system to be much more
dynamic

DPDK dynamic hardware support, will hotplug work here
Need dynamic virtual interfaces like virtio, tap, ...

DPDK File AFILE SYSTEM FOR DPDK

TO CONFIGURE AND
SyStem MONITOR DPDK

DPDK File System (DFS) 2 DPDK

Host system
4 . I
Container/VM/Host
External
Orchestration (i .)
Layer Applications
L 3 s \
v GE)
]
DPDK 7 QC) Standard Standard
Filesystem < > O ¥ | AppP] App 2 App3 App Applications
(NN
O C
/dpdk/<prg>-<pid> J 5 s
. J % ethdev cryptodev rawdeyv abcdev xyzdev compressdev
DPDK
. J

- DPDK File System backend provides the connection between the FUSE filesystem to app
- Each DPDK instance has it own filesystem path and configuration/information files
- The external or orchestration agents interact with the FUSE filesystem to Get/Set

information/configuration via files
- Also provides an API for applications to modify the FUSE file system dynamically

FUSE information @ DPDK

Create a FUSE or User space file system similar to /proc or /sys in the kernel
The DFS is backed by application code to handle read/write requests
The read or write request is then handled by that application to supply the data

From the Wiki https://en.wikipedia.org/wiki/Filesystem_in_Userspace

The FUSE system was originally part of AVFS (A Virtual Fi/esysfemg, a filesystem implementation
heavily influenced by the tfranslator concept of the GNU Hurd .2l

FUSE was originally released under the terms of the GNU General Public License and the GNU
Lesser General Public License, later also reimplemented as part of the FreeBSD base
systeml4 and released under the terms of Simplified BSD license. An ISC-licensed re-
implementation by Sylvestre Gallon was released in March 20132l and incorporated

info OpenBSD in June 2013.L4

FUSE was merged into the mainstream Linux kernel tree in kernel version 2.6.14.2

https://en.wikipedia.org/wiki/GNU_Hurd
https://en.wikipedia.org/wiki/Filesystem_in_Userspace
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/Filesystem_in_Userspace
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/ISC_license
https://en.wikipedia.org/wiki/Filesystem_in_Userspace
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/Filesystem_in_Userspace
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Filesystem_in_Userspace

Simplified Interface to FUSE

@ DATA PLANE DEVELOPMENT KIT

-

DPDK

-

(&

DPDK
FUSE
backend

Apps FUSE
backend

~

J

Simplified FUSE interface

libfuse interface

a

Socket connection
v

FUSE in Kernel

Simple API to create new files and directories

Callbacks from libfuse is a simple set of
events open, release, read, write and init

Creating files is a simple structure with
optional API to create files/directories

Example directory layout @ DPDK

/dpdk/
L dfs-12345 | — lcore-list < Most data or complex information is formatted as JSON
— copyright | F—roles < Simple data output e.g. Icore-cnt is just a simple ASCIl number
— debug | L— socket-cnt < Developer only needs to define the files/directories and what type of
| —dump_fs — ethdev access Read/Write
| F—hash | — avail_count
| —scratch | L— total_count < The ‘libfused’ library provides the connection to the kernel fuse code
L siz fuse-version and file system handling opcodes
| sizes — fuse-versio d fil tem handli d
| — dfs — mempool
| L— dfs_node | F—dump < The libfuse3 code gets messages from the kernel and handles the
— eal | L—info request in a layer hidden from the developer
| F—nbus — pid
| | |—buses — rawdev <« The layer the developer deals with is a simplified set of function
| | }b—dpaa | L— count callbacks to inform the developer about a few actions, but most of the
| | —fsime — ring data movement and files system actions are handled in the fuse layer
| | F—ifpga | L—info
| | —pc — timer < Files and/or directories can be added or removed dynamically
| | L—vdev | L—dump < Applications can also add to DFS by creating /dpdk/<appName>/...
| — config —type
| F—Icore-cnt L— version 10

DPDK API (DAPI) PROGRAMMING

INTERFACE FOR
NON-DPDK EXPERTS

DAP]) DPDK

e _ N
f Host system b Container/VM
i N
Applications
External o
Orchestration L
Agent Q
7'y OE) NGINX Network App
A 4 2 App 1 App N SSL Socket?
A @ pp PP || socket? | POKIVPP
() L
DPDK P4 ’ i DPDK Application Programming Interface (librte_dapi) Applications
Filesystem v
(@) ethdev cryptodev rawdev eventdev xyzdev compressdev
. J %
DPDK
N J

- New DPDK library librte_dapi (optional for applications)
- Providing a higher layer abstraction for applications using standard DPDK APlIs

- Giving the application developer a simpler set of APIs, which helps hide some of the
more complexed APls in DPDK and/or structures, but still able to use DPDK APls

- Hiding the nature of the hardware or software under the hood allowing the DAPI
layer to decide which type to use

DAPI Goals 2 DPDK

o Simplify/combine DPDK APIs into higher level API (Not a one for one substitution)

o Allows the application to still call DPDK standard APls

o APIs for configuration are combined into a single API with attributes

o MBUFs are now abstracted objects, to discourage direct access

o Add a *file descriptor’ like index system instead of port/queue IDs (open/close)
o New Rx/Tx APIs do not effect performance in current testing

o Hide the polling loop inside the DAPI layer away from the application

o Have these APlIs hide the DPDK performance specific details

o Data access is done by providing functions to set/get the data

o Utilize Macros and inline functions to create the new API

DAPI Goals 2 DPDK

» Applications can still use DPDK standard APIs if needed
« Hides the internals of DPDK with opaque objects and structures

» Uses default values in its APIs to eliminate complexed

« Data path, must be light weight and very high performance (no real impact)

» Must abstract the internals of DPDK like mbufs from the application

* Provide a simple set of APIs to access the mbufs (some already exist)

« Standard DPDK utility libraries e.g. Hash, Ring, cmdline, ... should not have
new APls as they are normally easy to use, except cmdline :-)

Example DAPI Prototypes @ DPDK

- int dapi_eal_init(struct dapi **ret_dapi, int argc, char *argv[]);
- Wrapper around rte_eal_init(), dapi_create(), dfs_create(), ...

- int dapi_open(const char *devname, int flags);
- Returns the ‘dd’ index into the device descriptor table

- The devname is a simple string with the port ID and Queue ID
encoded into the string or add your own set of strings

- e.g. ‘/ethdev/dev-<pid>:<qid>" the ‘/ethdev/ (prefix maybe optional)
- Use dapi_register_devname() for different device naming strings

- int dapi_close(int dd);

15

Example of DAPI @ DPDK

- int dapi_pktbuf pool create(int dd, unsigned int nb_bufs, unsigned int
cache_size, uint16_t data_size);
- Similar to rte_pktmbuf_pool_create() but reduce to basic needed arguments.

- int dapi_default_port _configs(struct dapi *dapi, portlist_t portlist, struct
port_cfg *cfq)

- Setup the port_cfg structure for each port in the portlist as a default value
- int dapi_eth_port_setup(int dd, struct port_cfg *p, uint32_t flags);
- Single line to setup and configure a port based on port_cfg or defaults if NULL

- The above API sets up the configuration defaults if needed

16

Example of DAPI @ DPDK

The single pktbuf t allocation/free routines
int dapi_pktbuf _alloc(int dd, pktbuf t *pkt)

- The pktbuf tis just a void* to hide the mbuf pointer
int dapi_pktbuf free(pktbuf t *pkt);

The pktbuf _t allocation/free routines for multiple packets
int dapi_pktbuf _alloc_bulk(int dd, pktbuf t **pkts, unsigned nb_bufs);

- Allocate or free multiple pktbuf t pointers (these are the mbuf pointers)
int dapi_pktbuf free bulk(pktbuf t **pkts, unsigned nb_bufs);

17
I .-——— 0 o 00000000001

Example of DAPI @ DPDK

- Pktio APIs

- Single pktbuf t read/write routines
int dapi_pktio_read(int dd, pktbuf_t **pkt);
int dapi_pktio_write(int dd, pktbuf_t *pkt);

- Multiple pktbuf t read/write routines
int dapi_pktio_read_muilti(int dd, pktbuf t **pkts, int nb_pkts);
int dapi_pktio_write_multi(int dd, pktbuf t **pkts, int nb_pkts);

- The pktbuf t writes are buffered and sent when flushed or the array is filled

int dapi_pktio_flush(int dd);
18
I ..—— - 1

19

=) DPDK

Pktio APIs

int dapi_pktio_set_len(pktbuf t *pkt, uint16_t len);
int dapi_pktio_get len(pktbuf t *pkt);

int dapi_pktio_get buflen(pktbuf t *pkt);

void *dapi_pktio_ptod(pktbuf t *pkt);

Some of these are already in rte_mbufs, trying to not create one to one APls
| have not listed all of the APIs here

The APl is a Work in Progress and any help would be great

20

=) DPDK

Using the dapi_open() routine you can define the files to port mapping
int dapi_register_devnames(struct dapi *dapi, struct dapi_devname *dn);
struct dapi_devname dn[] = { {.name = “/ethdev/eth0”, .pid = 1, .qid = 2},
{ .name = “/ethdev/eth1”, .pid = 4, .qid = 0},
{ .name = “/crypto/crypto0”, .pid = 3, .qid = 0},
{ .name = “/ethdev/40g-0”, .pid = 5, .qid = 0}, { .name = NULL } };
The .name contains dev-<pid>:<qid> or can be any string, could be dynamic as well

If the register call is not done then dapi_open() will expect the string to have a ‘dev-<pid>:<qid>’ string
segment ‘/ethdeVv’ or ‘/crypto’ strings maybe something we may need to identify a class of devices

int dapi_remote_launch(struct dapi *dapi, Icore_function_t func, void *arg, unsigned Icore_id);
Used to launch the function from user and set the this_dapi core local variable that hides details

20

Questions?

