
x

Supporting Cloud Native with
DPDK and containers
KEITH WILES @ INTEL CORPORATION

2

Making Applications Cloud Native Friendly

• How can we make DPDK Cloud Native Friendly?
• Reduce startup resources for quicker startup
• Make it simpler to startup and run a DPDK application
• Make it easy to monitor the application
• Make it easy to configure the application during runtime
• Make it easy to attach/detach hardware
• Make it easy to create new virtual interfaces
• Make it easy for non-DPDK applications to connect to DPDK owned

hardware

3

What can DPDK do?

• Needs to have less command line options

• Needs to be configurable at runtime

• Easy to configure during runtime
• Easy for orchestration to change and monitor DPDK apps

• Simpler set of APIs for non-DPDK experts to use in applications

• Improve performance for data movement to/from containers

4

Simplify DPDK Startup

• Command lines are great for developers not so much for others

• Simplify required command line options

• Needs to startup quickly with minimum resources
• lcores, memory/hugepages, devices, threads, …
• Can we make DPDK startup with just a thread
• Then add the resources to DPDK as needed via a runtime configuration

• What does DPDK need to make this happen

5

Dynamic DPDK Resources

• If DPDK started with minimum resources we need to have ways to add
these resources at runtime

• DPDK needs to have dynamic lcore support
• We need to add support to add/remove lcores at runtime
• We have a PoC that is able to add/remove lcores

• Memory resources in DPDK is coming along nicely and Anatoly has done
a great job in reworking DPDK memory system to be much more
dynamic

• DPDK dynamic hardware support, will hotplug work here
• Need dynamic virtual interfaces like virtio, tap, …

DPDK File
System

A FILE SYSTEM FOR DPDK
TO CONFIGURE AND
MONITOR DPDK

7

DPDK File System (DFS)

• DPDK File System backend provides the connection between the FUSE filesystem to app
• Each DPDK instance has it own filesystem path and configuration/information files
• The external or orchestration agents interact with the FUSE filesystem to Get/Set
information/configuration via files

• Also provides an API for applications to modify the FUSE file system dynamically

Host system

Container/VM/Host

Applications

DPDK

D
PD

K
Fil

e
Sy

st
em

Ba
ck

en
d

ethdev cryptodev rawdev abcdev

DPDK
Filesystem

/dpdk/<prg>-<pid>

External
Orchestration

Layer

xyzdev compressdev

App 1 App 2 App 3
Standard

App
Standard

Applications

8

FUSE information

• Create a FUSE or User space file system similar to /proc or /sys in the kernel
• The DFS is backed by application code to handle read/write requests
• The read or write request is then handled by that application to supply the data

• From the Wiki https://en.wikipedia.org/wiki/Filesystem_in_Userspace
The FUSE system was originally part of AVFS (A Virtual Filesystem), a filesystem implementation
heavily influenced by the translator concept of the GNU Hurd.[3]

FUSE was originally released under the terms of the GNU General Public License and the GNU
Lesser General Public License, later also reimplemented as part of the FreeBSD base
system[4] and released under the terms of Simplified BSD license. An ISC-licensed re-
implementation by Sylvestre Gallon was released in March 2013,[5] and incorporated
into OpenBSD in June 2013.[6]

FUSE was merged into the mainstream Linux kernel tree in kernel version 2.6.14.[7]

https://en.wikipedia.org/wiki/GNU_Hurd
https://en.wikipedia.org/wiki/Filesystem_in_Userspace
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/Filesystem_in_Userspace
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/ISC_license
https://en.wikipedia.org/wiki/Filesystem_in_Userspace
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/Filesystem_in_Userspace
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Filesystem_in_Userspace

9

Simplified Interface to FUSE

• Simple API to create new files and directories
• Callbacks from libfuse is a simple set of

events open, release, read, write and init
• Creating files is a simple structure with

optional API to create files/directories

FUSE in Kernel

libfuse interface

Simplified FUSE interface

DPDK
FUSE

backend

Apps FUSE
backend

DPDK

Socket connection

10

Example directory layout
/dpdk/
└── dfs-12345

├── copyright
├── debug
│ ├── dump_fs
│ ├── hash
│ ├── scratch
│ └── sizes
│ ├── dfs
│ └── dfs_node
├── eal
│ ├── bus
│ │ ├── buses
│ │ ├── dpaa
│ │ ├── fslmc
│ │ ├── ifpga
│ │ ├── pci
│ │ └── vdev
│ ├── config
│ ├── lcore-cnt

v Most data or complex information is formatted as JSON
v Simple data output e.g. lcore-cnt is just a simple ASCII number
v Developer only needs to define the files/directories and what type of

access Read/Write

v The ‘libfuse3’ library provides the connection to the kernel fuse code
and file system handling opcodes

v The libfuse3 code gets messages from the kernel and handles the
request in a layer hidden from the developer

v The layer the developer deals with is a simplified set of function
callbacks to inform the developer about a few actions, but most of the
data movement and files system actions are handled in the fuse layer

v Files and/or directories can be added or removed dynamically
v Applications can also add to DFS by creating /dpdk/<appName>/…

│ ├── lcore-list
│ ├── roles
│ └── socket-cnt
├── ethdev
│ ├── avail_count
│ └── total_count
├── fuse-version
├── mempool
│ ├── dump
│ └── info
├── pid
├── rawdev
│ └── count
├── ring
│ └── info
├── timer
│ └── dump
├── type
└── version

DPDK API (DAPI)
A Work In Progress

SIMPLIFIED
PROGRAMMING
INTERFACE FOR

NON-DPDK EXPERTS

12

DAPI

• New DPDK library librte_dapi (optional for applications)
• Providing a higher layer abstraction for applications using standard DPDK APIs
• Giving the application developer a simpler set of APIs, which helps hide some of the

more complexed APIs in DPDK and/or structures, but still able to use DPDK APIs
• Hiding the nature of the hardware or software under the hood allowing the DAPI

layer to decide which type to use

Container/VM

Applications

DPDK

D
P

D
K

 F
ile

 S
ys

te
m

 (D
FS

)

ethdev cryptodev rawdev eventdev xyzdev compressdev

App 1 App N Socket?

NGINX

DPDK/VPP
ApplicationsDPDK Application Programming Interface (librte_dapi)

SSL

Network App

Host system

DPDK
Filesystem

External
Orchestration

Agent

13

DAPI Goals

o Simplify/combine DPDK APIs into higher level API (Not a one for one substitution)

o Allows the application to still call DPDK standard APIs

o APIs for configuration are combined into a single API with attributes

o MBUFs are now abstracted objects, to discourage direct access

o Add a ‘file descriptor’ like index system instead of port/queue IDs (open/close)

o New Rx/Tx APIs do not effect performance in current testing

o Hide the polling loop inside the DAPI layer away from the application

o Have these APIs hide the DPDK performance specific details

o Data access is done by providing functions to set/get the data

o Utilize Macros and inline functions to create the new API

14

DAPI Goals

• Applications can still use DPDK standard APIs if needed

• Hides the internals of DPDK with opaque objects and structures

• Uses default values in its APIs to eliminate complexed

• Data path, must be light weight and very high performance (no real impact)

• Must abstract the internals of DPDK like mbufs from the application

• Provide a simple set of APIs to access the mbufs (some already exist)

• Standard DPDK utility libraries e.g. Hash, Ring, cmdline, … should not have
new APIs as they are normally easy to use, except cmdline :-)

15

Example DAPI Prototypes

• int dapi_eal_init(struct dapi **ret_dapi, int argc, char *argv[]);
• Wrapper around rte_eal_init(), dapi_create(), dfs_create(), …

• int dapi_open(const char *devname, int flags);
• Returns the ‘dd’ index into the device descriptor table
• The devname is a simple string with the port ID and Queue ID

encoded into the string or add your own set of strings
• e.g. “/ethdev/dev-<pid>:<qid>” the ‘/ethdev/’ (prefix maybe optional)
• Use dapi_register_devname() for different device naming strings

• int dapi_close(int dd);

16

Example of DAPI

• int dapi_pktbuf_pool_create(int dd, unsigned int nb_bufs, unsigned int
cache_size, uint16_t data_size);

• Similar to rte_pktmbuf_pool_create() but reduce to basic needed arguments.

• int dapi_default_port_configs(struct dapi *dapi, portlist_t portlist, struct
port_cfg *cfg)

• Setup the port_cfg structure for each port in the portlist as a default value

• int dapi_eth_port_setup(int dd, struct port_cfg *p, uint32_t flags);
• Single line to setup and configure a port based on port_cfg or defaults if NULL
• The above API sets up the configuration defaults if needed

17

Example of DAPI

• The single pktbuf_t allocation/free routines
int dapi_pktbuf_alloc(int dd, pktbuf_t *pkt)

• The pktbuf_t is just a void* to hide the mbuf pointer
int dapi_pktbuf_free(pktbuf_t *pkt);

• The pktbuf_t allocation/free routines for multiple packets
int dapi_pktbuf_alloc_bulk(int dd, pktbuf_t **pkts, unsigned nb_bufs);

• Allocate or free multiple pktbuf_t pointers (these are the mbuf pointers)
int dapi_pktbuf_free_bulk(pktbuf_t **pkts, unsigned nb_bufs);

18

Example of DAPI

• Pktio APIs
• Single pktbuf_t read/write routines

int dapi_pktio_read(int dd, pktbuf_t **pkt);
int dapi_pktio_write(int dd, pktbuf_t *pkt);

• Multiple pktbuf_t read/write routines
int dapi_pktio_read_multi(int dd, pktbuf_t **pkts, int nb_pkts);
int dapi_pktio_write_multi(int dd, pktbuf_t **pkts, int nb_pkts);

• The pktbuf_t writes are buffered and sent when flushed or the array is filled
int dapi_pktio_flush(int dd);

19

PKTIO DAPI APIs

• Pktio APIs
• int dapi_pktio_set_len(pktbuf_t *pkt, uint16_t len);
• int dapi_pktio_get_len(pktbuf_t *pkt);
• int dapi_pktio_get_buflen(pktbuf_t *pkt);
• void *dapi_pktio_ptod(pktbuf_t *pkt);

• Some of these are already in rte_mbufs, trying to not create one to one APIs
• I have not listed all of the APIs here

• The API is a Work in Progress and any help would be great

19

20

PKTIO DAPI APIs

• Using the dapi_open() routine you can define the files to port mapping
• int dapi_register_devnames(struct dapi *dapi, struct dapi_devname *dn);

• struct dapi_devname dn[] = { {.name = “/ethdev/eth0”, .pid = 1, .qid = 2},
{ .name = “/ethdev/eth1”, .pid = 4, .qid = 0},
{ .name = “/crypto/crypto0”, .pid = 3, .qid = 0},
{ .name = “/ethdev/40g-0”, .pid = 5, .qid = 0}, { .name = NULL } };

• The .name contains dev-<pid>:<qid> or can be any string, could be dynamic as well
• If the register call is not done then dapi_open() will expect the string to have a ‘dev-<pid>:<qid>’ string

segment ‘/ethdev’ or ‘/crypto’ strings maybe something we may need to identify a class of devices

• int dapi_remote_launch(struct dapi *dapi, lcore_function_t func, void *arg, unsigned lcore_id);
• Used to launch the function from user and set the this_dapi core local variable that hides details

20

“
”

Questions?

