
x

urdma: A Remote Direct Memory Access verbs provider using DPDK
PATRICK MACARTHUR

UNIVERSITY OF NEW HAMPSHIRE

SEPTEMBER 6, 2018

2

Acknowledgements

• urdma was initially developed during an internship with the IBM Zurich
Research Laboratory. The author would like to thank Dr. Bernard
Metzler for the opportunity as well as Jonas Pfefferle, Patrick Stuedi, and
Animesh Trivedi for their advice and critique on urdma.

• The author would like to thank Robert Russell and Timothy Carlin for
their advice and critique on this report and the University of New
Hampshire InterOperability Laboratory for the use of their RDMA cluster
for the development, maintenance, and testing of urdma and UNH EXS.

• This material is based upon work supported by the National Science
Foundation under Grant No. OCI-1127228 and under the National
Science Foundation Graduate Research Fellowship Program under
award number DGE-0913620.

3

Agenda

• Background

• Implementation

• Evaluation

• Summary

Background

5

Background: RDMA (Remote Direct Memory Access)

• Message-oriented

• “Zero-copy”: direct transfer between remote application virtual memory regions
with no intermediate data copies (on the hosts)

• Requires application to pre-register memory

• Kernel bypass: userspace application has direct access to network adapter

• Asynchronous: data transfers occur in parallel with application threads, using
OpenFabrics Alliance (OFA) verbs API

• Transfer operations

• SEND/RECV

• RDMA WRITE: push data to remote memory region

• RDMA READ: pull data from remote memory region

• Data structures: Queue Pair (QP), Completion Queue (CQ)

• Standards: InfiniBand, RoCE, iWARP

6

urdma: Userspace Software RDMA

• Software emulation of RDMA using DPDK

• Goals

• Low latency, high throughput

• Run on commodity Ethernet NIC

• Run unmodified verbs applications

• Perform data transfers in userspace using DPDK

• Prior work: softiwarp/softroce

• Perform data transfer in kernel space using kernel sockets

• Why urdma?

• Ease of development, easy to use as a development vehicle for new RDMA
features

• Storage applications; integration with SPDK (Storage Performance Development
Kit)

Implementation

8

urdma: Components

Multi-process application

• urdma_kmod: Loadable kernel

module for RDMA CM support

• urdmad: DPDK primary process

• urdma_prov: User verbs provider

library; applications run as DPDK

secondary process

App

urdma_prov

DPDK

V

E

R

B

S urdma_kmod

Userspace

Kernel space

urdmad

Ethernet NIC

9

urdma: Protocol

• Implements iWARP DDP and RDMAP

protocols

• Runs over UDP transport protocol

• TRP (Trivial Reliability Protocol) as

thin reliability shim

• Avoid byte-stream nature and state

machine of TCP

RDMAP

DDP

TRP

UDP

IP

Ethernet

RDMAP

DDP

MPA

TCP

IP

Ethernet

Standard iWARP urdma

10

urdma: Packet Processing

• urdmad assigns each RDMA queue

pair a hardware receive/transmit

Ethernet queue

• To allow verbs applications to access

the NIC independently

• Ethernet NIC hardware filters used to

separate packets into RX queues

• Using Flow Director or ntuple

filtering

• urdmad forwards all unfiltered packets

on each interface to kernel

• For each established connection,

packets filtered to specific receive

queue—received directly by verbs

application via urdma_prov

urdma

kmod

urdmad

NIC
urdma

prov

verbs

app

KNI

11

urdma initialization issues: rte_eal_init()

• As a verbs provider library, we want
DPDK to be invisible to the user
application

• We call rte_eal_init() in our own
implementation

• Our provider code is only run if urdma
kernel module loaded and urdmad
master process started

• Specific issues with rte_eal_init()

• Takes command-line arguments
• We construct our own fake argument list

• Changes CPU affinity of calling thread

• We create a new thread and call
rte_eal_init() from that thread

• Tell rte_eal_init() not to create other
lcores

• All verbs applications must run as the
same user (not necessarily root)

Main thread Master lcore
pthread_create()

User thread 1

User thread n

…

Verbs calls

12

urdma_prov: Data Transfer

• Data transfer done in background progress thread

• Separates DPDK operations from application threads

• Allows progress for RDMA READ and RDMA WRITE outside of verbs calls

• Inter-thread communication done via ring queues

➢ Enqueue one entry at a time

➢ Dequeue entries in bulk

ibv_post_send

Time

Data transfer

QP

CQ

ibv_poll_cq

Progress threadUser thread

13

urdma_kmod: Connection Establishment

liburdma urdmad urdma_kmod

QP connected

QP Ready to recv

RDMA CM Established Event

RDMA Connect

app

CM Packet

Exchange

Setup hardware

packet filters

Time

urdmad must enable receive filter before first packet arrives

(KNI)

Evaluation

15

Performance Test Setup

2 pairs of systems with Ubuntu 16.10 with Linux 4.8.0-46-generic kernel, DPDK
16.07.2, PCIe generation 3

• urdma/softiwarp (Software Implementations)
• Dual Intel Xeon ES-2630 v4 CPUs @ 2.20GHz

• 64 GB DDR4 RAM

• Intel XL710 40GbE NIC (firmware v5.05)

• Reference iWARP Hardware Implementation
• Dual Intel Xeon E5 2609 CPUs

• 64 GB DDR3 RAM

• Chelsio T580-LP-CR Unified Wire Ethernet controller (firmware v0.271.9472)

• Applications used
• perftest version 3.0+0.18.gb464d59-1

16

Perftest Latency: urdma vs. Chelsio iWARP NIC

urdma (Software) Hardware

Worse

Better

17

Perftest Throughput: urdma vs. Chelsio iWARP NIC

urdma (Software) Hardware

Better

Worse

Summary

19

Summary

• urdma

• Software emulation of RDMA

• Runs unmodified RDMA verbs applications

• Performs all data transfer in userspace

• No dependency on specific hardware

• Achieves reasonable performance

• Future work

• Zero copy sends?

• Using urdma for NVMf traffic

• Integration with emerging storage class memory technologies

“

”
Thanks!

Questions?
Patrick MacArthur <patrick@patrickmacarthur.net>

urdma download: https://github.com/zrlio/urdma

https://github.com/zrlio/urdma

