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DPDK Is No Longer As Greedy!

• DPDK can now allocate hugepage memory as needed

• DPDK can also release memory that is unused

• DPDK can put pages into fewer files

• Small page sizes and virtio are not enemies anymore!

• (18.08+) DPDK no longer requires a hugetlbfs mountpoint
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What Changed in 18.05?

Main design goal:

Ability to map/unmap hugepages at runtime, not just startup

Everything else is side effect and/or practical necessity!
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Memory Rework Design Principles

Question:

• How do you keep IOVA-contiguous memory without pre-sorting 

pages?

Answer:

• You don’t!

• In 18.05, we deal with pages, not segments

• Memory is no longer guaranteed to be IOVA-contiguous
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Memory Rework Design Principles

Question:

• What if you need IOVA-contiguous memory?

Answer:

• Chances are, you actually don’t…

• Ask for it!

• Normal malloc API’s will not allocate IOVA-contiguous memory

• Memzone allocator has a flag to request IOVA-contiguous memory

• Use VFIO for everything

• Use legacy mode
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Memory Rework Design Principles

Question:

• How do we guarantee secondary process has the same view of 

memory?

Answer:

• Preallocate all VA space at startup!

• Page table are synchronized over DPDK IPC

• Primary has authority over what pages get used
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Legacy DPDK Memory Architecture

• VA layout follows PA layout

• VA and PA layout is fixed
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18.05+ DPDK Memory Architecture

• VA layout is independent from PA layout

• VA layout is fixed, PA layout is not
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Changes & New Features in 18.05+

New API’s:

• New memzone flag:

• RTE_MEMZONE_IOVA_CONTIG

• Memory event and validation callbacks

• Page map/unmap events

• Allow/deny new page mappings over specified limit

• Page walk and lookup API’s

• rte_memseg_walk et al.
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Changes & New Features in 18.05+

EAL parameters:

• -m/--socket-mem is now a minimum, not a limit
• Think guaranteed memory availability

• --single-file-segments
• Creates fewer hugepage files

• --legacy-mem
• Mimics old DPDK

• --limit-mem (18.08+)
• Place upper limit on memory usage, per socket

• --in-memory (18.08+)
• Run without hugetlbfs mountpoint
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Future Changes (18.11+)

External memory support

• Currently RFC, V1 will be submitted for 18.11

• Using normal DPDK allocators with non-DPDK memory!

Memfd hugepages support for --in-memory mode

• Allows running without hugetlbfs and use virtio/vhost

• Patches currently at V1

• Virtio patches currently RFC

• Makes DPDK easier to set up in Cloud Native environments
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Why You Should Care

Generally, memory in DPDK is designed to be invisible, so why should anyone 
care?

• Because we can accidentally break stuff!

When changes happen, certain things may break because:

• Code makes assumptions about memory layout

• Code makes assumptions about internals of DPDK

Memory management is fundamental to DPDK, so changes in memory subsystem 
can potentially affect everyone!

• Call for more reviews of memory-related patches
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Memory Layout Dependency

Problem:

• Certain drivers in DPDK relied on PA layout for lookups

• Few memsegs to look through => little impact on performance

• After applying 18.05 memory hotplug changes, there was a 
noticeable performance drop

Solution:

• For affected drivers, stopgap solution was implemented for 18.05

• Performance still impacted for small page sizes

• Proper solution expected for 18.11
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Memory Layout Dependency

Problem:

• net/virtio relies on valid memory starting from offset 0 into page table

• A patch to 18.08 made it so that segments are allocated from the top of 

VA space

• As a result, net/virtio had issues trying to share more memory than was 

needed

Solution:

• Reverted the patch for 18.08

• Investigation still ongoing
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