
x

Exploring the New DPDK 

Memory Subsystem
ANATOLY BURAKOV

BRUCE RICHARDSON



2

DPDK Is No Longer As Greedy!

• DPDK can now allocate hugepage memory as needed

• DPDK can also release memory that is unused

• DPDK can put pages into fewer files

• Small page sizes and virtio are not enemies anymore!

• (18.08+) DPDK no longer requires a hugetlbfs mountpoint



Looking Inside ANATOLY BURAKOV



4

What Changed in 18.05?

Main design goal:

Ability to map/unmap hugepages at runtime, not just startup

Everything else is side effect and/or practical necessity!



5

Memory Rework Design Principles

Question:

• How do you keep IOVA-contiguous memory without pre-sorting 

pages?

Answer:

• You don’t!

• In 18.05, we deal with pages, not segments

• Memory is no longer guaranteed to be IOVA-contiguous



6

Memory Rework Design Principles

Question:

• What if you need IOVA-contiguous memory?

Answer:

• Chances are, you actually don’t…

• Ask for it!

• Normal malloc API’s will not allocate IOVA-contiguous memory

• Memzone allocator has a flag to request IOVA-contiguous memory

• Use VFIO for everything

• Use legacy mode



7

Memory Rework Design Principles

Question:

• How do we guarantee secondary process has the same view of 

memory?

Answer:

• Preallocate all VA space at startup!

• Page table are synchronized over DPDK IPC

• Primary has authority over what pages get used



8

Legacy DPDK Memory Architecture

• VA layout follows PA layout

• VA and PA layout is fixed

Page Page Page Page Page Page Page Page Page

rte_memseg rte_memseg

Page

malloc_elem malloc_elemmalloc_elem

rte_memzone rte_memzone

malloc_elem

rte_memzone

Contiguous VA area Contiguous VA area

Page Page Page Page Page Page Page Page Page Page



9

18.05+ DPDK Memory Architecture

• VA layout is independent from PA layout

• VA layout is fixed, PA layout is not

Page Page Page Page Page

rte_memseg

Contiguous VA area

Page Page Page Page Page

rte_memseg rte_memseg rte_memseg rte_memseg

Page Page Page Page Page

malloc_elem malloc_elem

rte_memzone



Shiny New Stuff BRUCE RICHARDSON



11

Changes & New Features in 18.05+

New API’s:

• New memzone flag:

• RTE_MEMZONE_IOVA_CONTIG

• Memory event and validation callbacks

• Page map/unmap events

• Allow/deny new page mappings over specified limit

• Page walk and lookup API’s

• rte_memseg_walk et al.



12

Changes & New Features in 18.05+

EAL parameters:

• -m/--socket-mem is now a minimum, not a limit
• Think guaranteed memory availability

• --single-file-segments
• Creates fewer hugepage files

• --legacy-mem
• Mimics old DPDK

• --limit-mem (18.08+)
• Place upper limit on memory usage, per socket

• --in-memory (18.08+)
• Run without hugetlbfs mountpoint



13

Future Changes (18.11+)

External memory support

• Currently RFC, V1 will be submitted for 18.11

• Using normal DPDK allocators with non-DPDK memory!

Memfd hugepages support for --in-memory mode

• Allows running without hugetlbfs and use virtio/vhost

• Patches currently at V1

• Virtio patches currently RFC

• Makes DPDK easier to set up in Cloud Native environments



Case Studies BRUCE RICHARDSON



15

Why You Should Care

Generally, memory in DPDK is designed to be invisible, so why should anyone 
care?

• Because we can accidentally break stuff!

When changes happen, certain things may break because:

• Code makes assumptions about memory layout

• Code makes assumptions about internals of DPDK

Memory management is fundamental to DPDK, so changes in memory subsystem 
can potentially affect everyone!

• Call for more reviews of memory-related patches



16

Memory Layout Dependency

Problem:

• Certain drivers in DPDK relied on PA layout for lookups

• Few memsegs to look through => little impact on performance

• After applying 18.05 memory hotplug changes, there was a 
noticeable performance drop

Solution:

• For affected drivers, stopgap solution was implemented for 18.05

• Performance still impacted for small page sizes

• Proper solution expected for 18.11



17

Memory Layout Dependency

Problem:

• net/virtio relies on valid memory starting from offset 0 into page table

• A patch to 18.08 made it so that segments are allocated from the top of 

VA space

• As a result, net/virtio had issues trying to share more memory than was 

needed

Solution:

• Reverted the patch for 18.08

• Investigation still ongoing



Q&A

Anatoly Burakov (anatoly.burakov@intel.com)

Bruce Richardson (bruce.richardson@intel.com)

mailto:anatoly.burakov@intel.com
mailto:bruce.richardson@intel.com

