
x

Dynamic Device Management
THOMAS MONJALON - MELLANOX

JEFF GUO - INTEL

QI ZHANG – INTEL

SEPTEMBER 2018, DUBLIN

2

DPDK origin = statically allocated resources

• CPU

• No hotplug yet

• Memory

• Dynamic since 18.05

• Devices

• Work in progress

3

Layers

• Application: manage ports and devices life cycle = takes decisions

• Device class interfaces = ports (ethdev, baseband, crypto, compress, event)

• Driver PMD = 1:n bridge between EAL device and multiple ports

• Device resources (EAL rte_device)

• Bus (pci, vdev, dpaa, fslmc, vmbus, ifpga)

4

Buses

• PCI – historical one – best supported

• VDEV

• NXP DPAA (17.11) / fslmc DPAA2 (17.05)

• Windows Hyper-V VMBus (18.08)

• iFPGA (18.05)

5

Devargs syntax

• Legacy syntax

• Assume PCI id (BDF)

• PMD-specific options

• New proposed syntax

• More explicit: bus=pci,id=BDF/class=eth,…/driver=virtio,…

• 18.08: introduce new parser

• 18.11: implement syntax properties

• New proposed option

• --vdev replaced by --dev generic option

• --whitelist replaced by --dev option

6

Blacklist / Whitelist

• Static lists defined at initialization

• Control bus probing

• Should allow dynamic policy

• Future API to design

• Application callback during probing?

• DPDK lists updated via API?

7

Probe on demand

• from ethdev (legacy vdev use case)

• rte_eth_dev_attach(const char *devargs, uint16_t *port_id) deprecated in 18.08

• mixing EAL devargs and ethdev port

• from EAL (legacy failsafe case)

• rte_eal_dev_attach(const char *name, const char *devargs) deprecated in 18.08

• supports only PCI and VDEV buses

• from EAL

• rte_eal_hotplug_add(const char *busname, const char *devname, const char *devargs)

• Should be simplified: only one parameter for new devargs syntax

• Multiple match requires option to skip already probed devices

8

Remove on demand

• from ethdev

• rte_eth_dev_close(uint16_t port_id)

• Should call rte_eth_dev_release_port

• Should trigger resource freeing at EAL level

• from EAL

• rte_eal_hotplug_remove(const char *busname, const char *devname)

• Should be simplified: only one parameter (devargs? rte_device?)

9

Notifications jungle

• ethdev port events

• RTE_ETH_EVENT_NEW

• RTE_ETH_EVENT_DESTROY

• introduced in 18.02 / fixed in 18.05

• RTE_ETH_EVENT_INTR_RMV

• introduced for failsafe in 17.05

• hardware events from kernel

• Linux support: uevent

• upper layer notification

• RTE_DEV_EVENT_ADD

• RTE_DEV_EVENT_REMOVE

• introduced in 18.05

10

Hotplug sequences

• It’s a mess currently in PMDs

• Hotplug should be:

• uevent

• RTE_DEV_EVENT_ADD

• application calls rte_eal_hotplug_add

• PMD probe ports

• PMD calls rte_eth_dev_probing_finish

• RTE_ETH_EVENT_NEW

• application get new ports

• Unplug should be:

• uevent

• RTE_DEV_EVENT_REMOVE

• application calls rte_eal_hotplug_remove

• PMD calls rte_eth_dev_removing ?

• RTE_ETH_EVENT_DESTROY

• application calls rte_eth_dev_close

• And/Or

• RTE_ETH_EVENT_INTR_RMV if supported

• application calls rte_eth_dev_close

11

Rx/Tx during unplug

• PMD can stop any request if aware of the event

• mlx case

• generic SIGBUS handler on device address ranges

• pending for 18.11

12

Hardware hotplug handle’s proposal

Hey,

catch!

Notify me

if you got

one.

I know whom

send it.

I am stronger, I

can control it.

Hey,

catch!

 Kernel handle and user space handle

are independent. Framework help to

decoupling the segment tasks.

 The events are diversity, could be

identified by framework.

 Framework provide service for taking

over the control at some break point

or handle some tough task.

13

Hardware event and handler

PCI Device

Bus

Failure

Handler

Kernel space

User space

VFIO PCIUIO PCI
Kobject

PMD (OFED)

Virtual Device

OFED
hotplug
handler

MSFT platform

Netvsc
pmd

MSFT
Hyper-V/VMbusOFED Kernel

Driver

Green block: hotplug handler

Blue arrow: Existing path

ueventsigbus req notify IBV event

APP

PMD (UIO/VFIO)

Ethdev

Eal dev remove/add event

MSFT
hotplug
handler

hotplug

add

handler
Vfio

platf-
ormEthdev intr rmv event

Orange arrow: Adding path

14

UIO/VFIO PCI hotplug failure handler

APP/

Driver

Failure

Handler

PCI BUS

NIC1
BARs

(NIC1)

BARs

(NIC2)

NIC2

1) -> 2) Nic2 is suddenly broken when working.

3) Irresistible access the BARs of Nic2.

4)Kernel issue sigbus error.

5)Signal handler identifies the faulting BARs.

6)Failure handler guaranty the rest memory access,

by remap a new fake one.

7)Handle hotplug hw event, stop process and

detach device.

UIO hotplug: 1)-2)-3)-4)-5)-6)-7)

VFIO special hotplug: VFIO kernel specially send

release request and monitor status, it will not delete

device until user space release device resource.

It is 1)-2)-3)-7).

Sigbus

Hotplug hw event

1

2Sigbus

Handler

3

5

Normal access

6

4

7

15

Multi-process

• Gap: hotplug does not support multi-process

• Patches pending for 18.11

• Broadcast hotplug messages via IPC channel

• Rollback for any failure

• NO need for private vdev

• On unplug

• Port detached locally by each process

• Last process will destroy the port

Primary

Resource

Manager

Secondary

Work load 1

Secondary

Work load 2

16

Multi-process implementation (1)

• Attach a device from Primary

Primary Secondary

APP Thread MP Thread INTR Thread… …

Rte_eal_hotplug_add Attach

Handler
Attach device

Bus->scan

Bus->plug

Detach device

Bus->unplug

Rollback?

rte_mp_request_sync
Attach device

Bus->scan

Bus->plug

Detach device

Bus->unplug

rte_eal_alarm_set

rte_eal_alarm_set

rte_mp_reply

Success Fail

Rollback
Handler

rte_mp_reply

YES

NO

Sync IPC call

rte_mp_request_sync

17

Multi-process implementation (2)

• Attach a device from Secondary

Primary Secondary

MP Thread MP Thread INTR Thread

Attach device

Bus->scan

Bus->plug

Detach device

Bus->unplug

rte_eal_alarm_set

rte_eal_alarm_set

rte_mp_reply
Rollback
Handler

rte_mp_reply

ITR Thread…

Attach
Handler

Attach device

Bus->scan

Bus->plug

Rollback?

Success Fail

App Thread

Rte_eal_hotplug
_add

…

Attach
Handler

rte_mp_request_syncrte_eal_alarm_set

rte_mp_request_sync

YES

NO

Detach device

Bus->unplug

rte_mp_reply

rte_mp_request_sync

Sync IPC call

18

Multi-process hotplug - Future works

• Reliable implementation: reserve shared memory spaces

• http://patchwork.dpdk.org/patch/40537/

• Support replying sync IPC request from a separate thread

• remove existing hacky code

• Expose driver capability

• Safe device detaching

• handshake? ownership?

http://patchwork.dpdk.org/patch/40537/

19

Device migration

• at ethdev level

• Bonding

• Slave devices are configured separately

• Master and slaves are all seen by the appplication

• Failsafe

• Sub-devices get the same configuration

• Migration transparent to the application

• Only failsafe port is seen by the (good) applications (RTE_ETH_DEV_NO_OWNER)

• Ownership introduced in 18.02

20

Ownership

• Application (or upper layer like failsafe) can own an ethdev port.

• Recommended to get ownership on new port event.

• Only one entity can own a port (locks).

• By convention, only the owner should manage a port.

• The port iterator can list own ports.

• Usages:

• Failsafe sub-devices are owned (i.e. managed) by failsafe

• Multi-process can protect itself

21

ethdev iterator

• Legacy iteration of ports was

• for(int port; port < rte_eth_dev_count(); port++)

• not hotplug proof

• not ownership proof

• Applications encouraged to fix port iteration

when deprecating rte_eth_dev_count (in 18.05) and should be removed in 18.11.

• Iterators are

• RTE_ETH_FOREACH_DEV

• RTE_ETH_FOREACH_DEV_OWNED_BY

22

Device classes

• ethdev

• Ownership

• Iterator

• Events

• Failover vdev

• baseband

• crypto

• compress

• event

• TODO

“

”
Thank you

Questions?

