Dynamic Device Management

DPDK origin = statically allocated resources 2DPDK

CPU
- No hotplug yet

Memory
- Dynamic since 18.05

Devices
- Work in progress

Layers @ DPDK

Application: manage ports and devices life cycle = takes decisions

Device class interfaces = ports (ethdev, baseband, crypto, compress, event)

Driver PMD = 1:n bridge between EAL device and multiple ports
Device resources (EAL rte_device)

Bus (pcl, vdey, dpaa, fsImc, vmbus, ifpga)

2)DPDK

Buses

PCI — historical one — best supported

VDEV

NXP DPAA (17.11) / fsimc DPAA2 (17.05)
Windows Hyper-V VMBus (18.08)

iIFPGA (18.05)

Devargs syntax /@) DPDK

- Legacy syntax
Assume PCI id (BDF)
PMD-specific options

- New proposed syntax
More explicit: bus=pci, id=BDF/class=eth,../driver=virtio,..
18.08: introduce new parser
18.11: implement syntax properties

- New proposed option
--vdev replaced by —--dev generic option
--whitelist replaced by —-dev option

Blacklist / Whitelist) DPDK

Static lists defined at initialization

Control bus probing

Should allow dynamic policy

Future API to design
Application callback during probing?

DPDK lists updated via API1?

Probe on demand 2 DPDK

- from ethdev (legacy vdev use case)
rte_eth _dev_attach(const char *devargs, uintl6_t *port_id) deprecated in 18.08
mixing EAL devargs and ethdev port

- from EAL (legacy failsafe case)
rte_eal dev_attach(const char *name, const char *devargs) deprecated in 18.08
supports only PCI and VDEV buses

- from EAL
rte_eal hotplug_add(const char *busname, const char *devname, const char *devargs)
Should be simplified: only one parameter for new devargs syntax
Multiple match requires option to skip already probed devices

=) DPDK
Remove on demand @

- from ethdev
rte_eth _dev_close(uintl6_t port_id)
Should call rte_eth_dev _release port
Should trigger resource freeing at EAL level

- from EAL

rte_eal hotplug_remove(const char *busname, const char *devname)

Should be simplified: only one parameter (devargs? rte_device?)

Notifications jungle

2)DPDK

ethdev port events
RTE_ETH_EVENT_NEW
RTE_ETH EVENT DESTROY
introduced in 18.02 / fixed in 18.05

RTE_ETH _EVENT INTR_RMV
introduced for failsafe in 17.05

hardware events from kernel
Linux support: uevent
upper layer notification

- RTE_DEV_EVENT_ADD
- RTE_DEV_EVENT_REMOVE
introduced in 18.05

It's a mess currently in PMDs

Hotplug should be: - Unplug should be:
- uevent - uevent
RTE _DEV_EVENT_ADD - RTE_DEV_EVENT REMOVE
application calls rte_eal hotplug_add - application calls rte_eal hotplug _remove
PMD probe ports - PMD calls rte_eth_dev_removing ?
PMD calls rte_eth_dev_probing_finish - RTE_ETH_EVENT_DESTROY
RTE_ETH_EVENT_NEW - application calls rte_eth_dev_close

application get new ports

And/Or
RTE_ETH _EVENT INTR_RMV if supported
application calls rte_eth_dev_close

RX/TX during unplug 2)DPDK

PMD can stop any request if aware of the event
- mix case

generic SIGBUS handler on device address ranges
- pending for 18.11

Hardware hotplug handle’'s proposal 2 DPDK

> The events are diversity, could be
identified by framework.

> Kernel handle and user space handle
M el ey are independent. Framework help to
decoupling the segment tasks.

send it.
| am stronger, |
can control it. > Framework provide service for taking
over the control at some break point

(QE or handle some tough task.

Notify me

o\

12

>) DPDK
Hardware event and handler 2 DPDK

Blue arrow: Existing path

Green block: hotplug handler

T Ethdev intr rmv event T\ k
[0

Eal dev remove/add event
|

Failure
Handler PMD (UIO/VFIO) PMD (OFED)

Netvsc
pmd

MSFT
hotplug
handler

MSFT
Hyper-V/VMbus

Virtual Device
13

IBV event

Kernel space

UIO PCI VFIO PCI OFED Kernel “"0
Kobject Driver handler

—— e e e - - - - - -

PCIl Device

UIO/VFIO PCI hotplug failure handler @ DPDK

PCI BUS 1) -> 2) Nic2 is suddenly broken when working.
3) Irresistible access the BARs of Nic2.

NIC1 4)Kernel issue sigbus error.

BARs 1 . . - .
’ 5)Signal handler identifies the faulting BARs.
APP/ (3] (NICT) |

©® Normal access

6)Failure handler guaranty the rest memory access,
by remap a new fake one.

Driver

7)Handle hotplug hw event, stop process and
NIC2 ° detach device.

UIO hotplug: 1)-2)-3)-4)-5)-6)-7)

Sigbus :

Handler

BARs
(NIC2)

VFIO special hotplug: VFIO kernel specially send
release request and monitor status, it will not delete
device until user space release device resource.

Itis 1)-2)-3)-7).

Failure ¢
Handler

Hotplug hw event

14

Multi-process @ DPDK

Gap: hotplug does not support multi-process

: Secondary
Patches pending for 18.11

Work load 1

Primary

Resource
Manager

Secondary

: Work load 2
Broadcast hotplug messages via IPC channel

Rollback for any failure
NO need for private vdev

On unplug
Port detached locally by each process
Last process will destroy the port

Multi-process implementation (1) @ DPDK

- Attach a device from Primary
S Sync IPC call

Primary

Secondary

Rte_eal_hotplug_add

Attach device
Bus->scan
Bus->plug rte_mp_request_

Aftach device
Bus->scan
Bus->plug

Attach
Handler
-

rte_mp_req

Rollback rte_eal_alarm_set

Handler
Detach device
Bus->unplu
rte_mp_reply 2R

Rollback?

NO

Detach device I
Bus->unplug

Success

Multi-process implementation (2) @ DPDK

- Attach a device from Secondary

R Sync IPC call

Secondary

rte_mp_request_syn

. Rte_eal_hotplug
Attach device add
Bus->scan -
Bus->plug Atftach
Handler Attach device
H Bus->scan
Bus->plug
Rollback?
rfe_mp_request_syn

Rollback

Detach device Handler

Bus->unplug rte_eal_alarm_se

Detach device
Bus->unplug

Success

Multi-process hotplug - Future works /@) DPDK

Reliable implementation: reserve shared memory spaces
http://patchwork.dpdk.org/patch/40537/

Support replying sync IPC request from a separate thread
remove existing hacky code

Expose driver capability

Safe device detaching
handshake? ownership?

http://patchwork.dpdk.org/patch/40537/

Device migration @ DPDK

at ethdev level

Bonding
Slave devices are configured separately
Master and slaves are all seen by the appplication

Failsafe
Sub-devices get the same configuration
Migration transparent to the application

Only failsafe port is seen by the (good) applications (RTE_ETH_DEV_NO_OWNER)
- Ownership introduced in 18.02

Ownership @ DPDK

Application (or upper layer like failsafe) can own an ethdev port.
Recommended to get ownership on new port event.

Only one entity can own a port (locks).
By convention, only the owner should manage a port.
The port iterator can list own ports.

Usages:

Failsafe sub-devices are owned (i.e. managed) by failsafe
Multi-process can protect itself

ethdev Iterator /@) DPDK

Legacy iteration of ports was
for (int port; port < rte eth dev count(); port++)
not hotplug proof
not ownership proof

Applications encouraged to fix port iteration
when deprecating rte_eth dev count (in 18.05) and should be removed in 18.11.

I[terators are
RTE_ETH FOREACH DEV
RTE_ETH FOREACH DEV_OWNED BY

Device classes

2)DPDK

ethdev
Ownership
lterator
Events
Failover vdev

baseband
crypto
compress
event

TODO

DPDK

Thank you

Questions?

