
x

Lock Free RW Concurrency in
hash library

HONNAPPA NAGARAHALLI
ARM

2

Agenda

•  Current Issues

•  Ingredients for lock free algorithms

•  Design for lock free RW concurrency in rte_hash

•  Reclaiming Memory

•  Plan for upstreaming

3

Current Issues

•  Preempted writer will block the readers

•  Problem applies for platforms with HTM when it falls back to traditional locks
 static inline void rte_rwlock_write_lock_tm(rte_rwlock_t *rwl)

 {

 if (likely(rte_try_tm(&rwl->cnt)))

 return;

 rte_rwlock_write_lock(rwl); == fallback to traditional lock
 }

•  Application uses the key store index to reference its data
•  Index should not be freed till the application has stopped using it

4

Current Issues

•  Performance of lookups in the presence of writers

0	 500	 1000	 1500	 2000	 2500	 3000	

2	

4	

6	

8	

10	

12	

Lookup	performance	with	and	without	add	

Lookup	 Lookup	with	add	

5

Ingredients for lock free algorithms

•  Atomic operations – sizes matter, look for wider support

•  Memory ordering operations – Memory barriers or C11 atomics

•  Orderings by themselves are not enough. Need to identify the ‘payload’ and

‘guard’

•  Payload – the data being propagated from writer to reader, accesses are not

required to be atomic

•  Guard – Protects access to the payload, accesses need to be atomic

•  Synchronizes with relationship between writer and reader

6

Ingredients for lock free algorithms

•  Data structure specific challenges

•  Re-claiming memory

•  Readers continue to reference an entry in the data structure even the after

delete

•  Memory cannot be ‘freed’ immediately after ‘delete’

•  Delete – Remove the reference to memory/entry

•  Free – Returning the memory/entries to free pool

•  Mechanisms are required to identify when to ‘free’ the entry/memory

7

Design

•  Atomic Operations – relying on 32b operations

•  Memory orderings – working with C11 atomic functions
•  Payload 1 – key (stored in key store)
•  Guard 1 – pdata (stored in key store)
•  Payload 2 - current signature and alternate signature (stored in bucket entry)
•  Guard 2 – Index to {key, pdata} entry in the key store (stored in bucket entry)

8

Design – Ordering Mem Operations –
Hash Add/Lookup

Writer Reader KS BE Key, Data
(K, D)

Sig, Key-Index
(S, I)

Store
K

a

Store - Rel
I

B
Load - Acq I

C

K
Load d

Store
S

b

Load S
c

Store - Rel
D

A

D
Load - Acq D

Non-Atomic

Atomic

A Synchronizes
with D

B Synchronizes
with C

Notice that A and

D need not be atomic

operations

9

Design – Ordering Mem Operations –
Hash Update/Lookup

Writer Reader KS BE
Key, Data

(K, D)
Sig, Key-Index

(S, I)

Load - Acq I
B

K
Load c

Load S
b

Store - Rel
D

A

D
Load - Acq C

Non-Atomic

Atomic

A Synchronizes
with C

Load - Acq I

K
Load

Load S

D
Load - Acq

For hash update ‘Key Index’
can’t be used as the guard.

This forces us to have 2 sets of
payloads and guards.

If hash update is changed to
allocate a new key entry
from key store, memory
orderings can be simplified.

10

Design – Data Structure Specific Challenge

Writer Reader P S

Lookup Fails

Move to primary

Entry is in
secondary
bucket

•  Hash add can move entries to their alternate positions

•  Due to concurrent adds, reader might not find the entry even though it is
present

Entry is
moved from
secondary
bucket Lookup Fails

!

Entry is NOT
in secondary
bucket

Primary
Bucket

Secondary
Bucket

11

Design – Data Structure Specific Challenge

Writer Reader P S

Lookup Fails

Move to primary

Entry is in
secondary
bucket

•  Solution uses a global counter

•  Counter indicates to the reader that the table has changed

Entry is
moved from
secondary
bucket Lookup Fails

Entry is NOT
in secondary
bucket

Primary
Bucket

Secondary
Bucket C Global

Counter

Increment

Read

Read Counter changed,
repeat the lookup

•  Entry present but not moving – entry is found
immediately

•  Entry present but moving – reader has to chase it

•  Entry not present – Repeats till the move stops –

Can be improved by using bucket counter

12

Re-claiming Memory – TQS

•  Thread Quiescent State (TQS) - Any place in the code where the thread does not
hold a reference to shared memory

D1	 D2	 D3	

D1	 D2	 D3	

D1	 D2	 D3	

while	(1)	loop		

D1	 D2	 D3	

Reader	Thread	1	

T	2	

T	3	

T	4	

Time	

Critical Sections –
reference shared
memory in D1, D2 and
D3 data structures

Quiescent states – do
not reference any
shared memory.

Critical	Section	

Quiescent states for D1

13

D1	 D2	 D3	Reader	Thread	1	

D1	 D2	 D3	T	2	

D1	 D2	 D3	T	3	

D1	 D2	 D3	T	4	

Re-claiming Memory – Delete/Free

Free the memory after every thread
has gone through at least 1 quiescent
state

Free	

Won’t reference
the ‘deleted’
memory

Remove the
reference to shared

memory

Can’t free memory during
this period as threads are
still referencing it

Delete	
Delete an entry

from data structure
D2

14

Re-claiming Memory – rte_tqs library

•  rte_tqs library

•  Provides the ability to check if a set of reader threads have entered at least 1

quiescent state

•  Goals

•  Provide flexibility to check the quiescent state

Ø  Single data structure, a group of data structures or any application defined granularity

•  Ability to check the quiescent state of a given set/all of readers

•  Ability to check quiescent state synchronously

•  Ability to check quiescent state at a later point

15

Re-claiming Memory – rte_tqs library

•  APIs

•  rte_tqs_create – creates a TQS variable

•  rte_tqs_start – triggers the readers to inform the writer about completion of

‘n’ number of quiescent states

•  rte_tqs_get – checks if the threads have passed through ‘n’ number of

quiescent states

•  rte_tqs_update – called by the data plane threads to update the tqs state

•  rte_tqs_delete – free tqs checker entry

16

Plans for upstreaming

•  Lock Free RW concurrency patch will be sent to mailing list for

review (beginning of next week) – Targeting 18.11

•  TQS library – High Level Design, API definition - Done

•  Coding/Testing need to happen – Targeting Q4 for 1st patch

Questions?

18

Scaling with Lock Free RW concurrency

•  Numbers with patch

0	 50	 100	 150	 200	 250	 300	 350	

2	

4	

6	

8	

10	

12	

Lookup	performance	with	and	without	add	

Lookup	 Lookup	with	add	

