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=) DPDK
Current Issues é)

- Preempted writer will block the readers

Problem applies for platforms with HTM when it falls back to traditional locks

static inline void rte_rwlock_write_lock_tm(rte_rwlock_t *rwil)

{
if (likely(rte_try_tm(&rwl->cnt)))

return;
rte_rwlock_write_lock(rwl); == fallback to traditional lock

- Application uses the key store index to reference its data
Index should not be freed till the application has stopped using it



=) DPDK
Current Issues @

- Performance of lookups in the presence of writers

Lookup performance with and without add
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Ingredients for lock free algorithms @ DPDK

- Atomic operations — sizes matter, look for wider support

- Memory ordering operations — Memory barriers or C11 atomics
Orderings by themselves are not enough. Need to identify the ‘payload’ and
‘guard’

Payload — the data being propagated from writer to reader, accesses are not
required to be atomic

Guard — Protects access to the payload, accesses need to be atomic

Synchronizes with relationship between writer and reader



Ingredients for lock free algorithms @ DPDK

Data structure specific challenges

- Re-claiming memory
Readers continue to reference an entry in the data structure even the after
delete
Memory cannot be ‘freed’ immediately after ‘delete’
Delete — Remove the reference to memory/entry
Free — Returning the memory/entries to free pool

Mechanisms are required to identify when to ‘free’ the entry/memory



Design @ DPDK

- Atomic Operations — relying on 32b operations

- Memory orderings — working with C11 atomic functions
Payload 1 — key (stored in key store)
Guard 1 — pdata (stored in key store)
Payload 2 - current signature and alternate signature (stored in bucket entry)
Guard 2 — Index to {key, pdata} entry in the key store (stored in bucket entry)



Design — Ordering Mem Operations —
Hash Add/Lookup
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Design — Ordering Mem Operations —
Hash Update/Lookup

DPDK
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Design — Data Structure Specific Challenge

9 DATA PLANE DEVELOPMENT KIT

Hash add can move entries to their alternate positions

Due to concurrent adds, reader might not find the entry even though it is
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Design — Data Structure Specific Challenge 2)DPDK

DATA PLANE DEVELOPMENT KIT

- Solution uses a global counter

- Counter indicates to the reader that the table has changed
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Re-claiming Memory — TQS @ DPDK

Thread Quiescent State (TQS) - Any place in the code where the thread does not

hold a reference to shared memory
while (1) loop
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Re-claiming Memory — Delete/Free @ DPDK

Delete Free Can't free memory during
Delete an entry this period as threads are
from data structure still referencing it
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Re-claiming Memory — rte_tgs library @ DPDK

- rte_tgs library

Provides the ability to check if a set of reader threads have entered at least 1

quiescent state

- Goals

Provide flexibility to check the quiescent state
» Single data structure, a group of data structures or any application defined granularity

Ability to check the quiescent state of a given set/all of readers
Ability to check quiescent state synchronously

Ability to check quiescent state at a later point



Re-claiming Memory — rte_tgs library @ DPDK

- APls

rte_tgs_create — creates a TQS variable

rte_tqs_start — triggers the readers to inform the writer about completion of

‘n’ number of quiescent states

rte_tgs_get — checks if the threads have passed through ‘n’ number of

quiescent states
rte_tgs_update — called by the data plane threads to update the tgs state

rte_tqs_delete — free tqs checker entry



. ) DPDK
Plans for upstreaming

Lock Free RW concurrency patch will be sent to mailing list for

review (beginning of next week) — Targeting 18.11

TQS library — High Level Design, API definition - Done

- Coding/Testing need to happen — Targeting Q4 for 15t patch



Questions?



Scaling with Lock Free RW concurrency @ DPDK

Numbers with patch

Lookup performance with and without add
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