Lock Free RW Concurrency in
hash library

HONNAPPA NAGARAHALLI
ARM

Agenda @ DPDK

Current Issues

Ingredients for lock free algorithms

Design for lock free RW concurrency in rte_hash
Reclaiming Memory

Plan for upstreaming

=) DPDK
Current Issues é)

- Preempted writer will block the readers

Problem applies for platforms with HTM when it falls back to traditional locks

static inline void rte_rwlock_write_lock_tm(rte_rwlock_t *rwil)

{
if (likely(rte_try_tm(&rwl->cnt)))

return;
rte_rwlock_write_lock(rwl); == fallback to traditional lock

- Application uses the key store index to reference its data
Index should not be freed till the application has stopped using it

=) DPDK
Current Issues @

- Performance of lookups in the presence of writers

Lookup performance with and without add

12

10

o

500 1000 1500 2000 2500 3000

M Lookup ™ Lookup with add

Ingredients for lock free algorithms @ DPDK

- Atomic operations — sizes matter, look for wider support

- Memory ordering operations — Memory barriers or C11 atomics
Orderings by themselves are not enough. Need to identify the ‘payload’ and
‘guard’

Payload — the data being propagated from writer to reader, accesses are not
required to be atomic

Guard — Protects access to the payload, accesses need to be atomic

Synchronizes with relationship between writer and reader

Ingredients for lock free algorithms @ DPDK

Data structure specific challenges

- Re-claiming memory
Readers continue to reference an entry in the data structure even the after
delete
Memory cannot be ‘freed’ immediately after ‘delete’
Delete — Remove the reference to memory/entry
Free — Returning the memory/entries to free pool

Mechanisms are required to identify when to ‘free’ the entry/memory

Design @ DPDK

- Atomic Operations — relying on 32b operations

- Memory orderings — working with C11 atomic functions
Payload 1 — key (stored in key store)
Guard 1 — pdata (stored in key store)
Payload 2 - current signature and alternate signature (stored in bucket entry)
Guard 2 — Index to {key, pdata} entry in the key store (stored in bucket entry)

Design — Ordering Mem Operations —
Hash Add/Lookup

9 DATA PLANE DEVELOPMENT KIT

Writer
¢ Store
Store - Rel
D
S Store
Store - Rel

Key, Data
(K. D)

w) \O) \>)\0

)

Sig, Key—lndexl BE I
(S.1)

Reader

Non-Atomic

Atomic

Synchronizes
B with C

Synchronizes
A with D

Notice that | A) and

D) need not be atomic

operations

Design — Ordering Mem Operations —
Hash Update/Lookup

DPDK

DATA PLANE DEVELOPMENT KIT

2

Reader

Non-Atomic

Mlﬂ Ke&%‘;‘m I KS I Sig, K(?/I;ndexl BE I
| |« - Load-Aca_ _ _ _ __ | ______ 4
S le Locnc(jI {
Load - AcC
ke . LD - AC a._ . _. _
¢ le Load l
D Store - Rel A
Load - Acq | B
S e R T > |
o
Load ol S
_ C
Lo _ lood-Acg (©)
Load C
X > K

Atomic

Synchronizes
A with

C

For hash update ‘Key Index’
can't be used as the guard.

This forces us to have 2 sets of
payloads and guards.

If hash update is changed to
allocate a new key entry
from key store, memory
orderings can be simplified.

Design — Data Structure Specific Challenge

9 DATA PLANE DEVELOPMENT KIT

Hash add can move entries to their alternate positions

Due to concurrent adds, reader might not find the entry even though it is

present

M|ﬂ' Primary

Entry is
moved from
secondary
bucket

Bucket

Move 1o primary

]

>

Secondoryl S I Reader
Bucket
Entry is in
Lookup »| Faqils secondary
bucket
Lookup Entry is NOT

>

Fails insecondary

bucket

Design — Data Structure Specific Challenge 2)DPDK

DATA PLANE DEVELOPMENT KIT

- Solution uses a global counter

- Counter indicates to the reader that the table has changed

[i Second
Wiiter Seafc] wmamle] cwml s Reader

Read >
Entry is in
| LOOkUp » Fqils secondary
Increment > pucket
Entry is .
moved from | Move to primary >
sbeUcC?(ré?ory Lookup . Entryis NOT
. » FQils insecondary
bucket
L Read p Counter changed,
repeat the lookup

Entry present but not moving — entry is found Entry not present — Repeats till the move stops —

immediately Can be improved by using bucket counter
11

- Entry present but moving — reader has to chase it
L e

Re-claiming Memory — TQS @ DPDK

Thread Quiescent State (TQS) - Any place in the code where the thread does not

hold a reference to shared memory
while (1) loop

CriticaIASection

Quiescent states — do
Reader Th read 1 not reference any

shared memory.

T2
Quiescent states for D1
Crifical Sections —
T 3 reference shared

memory in D1, D2 and
D3 data structures

|
T

Time—

12

Re-claiming Memory — Delete/Free @ DPDK

Delete Free Can't free memory during
Delete an entry this period as threads are
from data structure still referencing it

D2

Reader Thread 1
T2
the ‘deleted’
| memory
Remove the
reference to shared
memory

Free the memory after every thread
has gone through at least T quiescent
state

T4

13

Re-claiming Memory — rte_tgs library @ DPDK

- rte_tgs library

Provides the ability to check if a set of reader threads have entered at least 1

quiescent state

- Goals

Provide flexibility to check the quiescent state
» Single data structure, a group of data structures or any application defined granularity

Ability to check the quiescent state of a given set/all of readers
Ability to check quiescent state synchronously

Ability to check quiescent state at a later point

Re-claiming Memory — rte_tgs library @ DPDK

- APls

rte_tgs_create — creates a TQS variable

rte_tqs_start — triggers the readers to inform the writer about completion of

‘n’ number of quiescent states

rte_tgs_get — checks if the threads have passed through ‘n’ number of

quiescent states
rte_tgs_update — called by the data plane threads to update the tgs state

rte_tqs_delete — free tqs checker entry

.) DPDK
Plans for upstreaming

Lock Free RW concurrency patch will be sent to mailing list for

review (beginning of next week) — Targeting 18.11

TQS library — High Level Design, API definition - Done

- Coding/Testing need to happen — Targeting Q4 for 15t patch

Questions?

Scaling with Lock Free RW concurrency @ DPDK

Numbers with patch

Lookup performance with and without add
12

10

[ee)

o

50 100 150 200 250 300 350

B Lookup M Lookup with add

18

