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Agenda 

•  Current Issues 
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•  Design for lock free RW concurrency in rte_hash 
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Current Issues 

•  Preempted writer will block the readers 

•  Problem applies for platforms with HTM when it falls back to traditional locks 
 static inline void rte_rwlock_write_lock_tm(rte_rwlock_t *rwl) 

       { 

            if (likely(rte_try_tm(&rwl->cnt))) 

                    return; 

            rte_rwlock_write_lock(rwl); == fallback to traditional lock 
       } 

 

•  Application uses the key store index to reference its data 
•  Index should not be freed till the application has stopped using it 
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Current Issues 

•  Performance of lookups in the presence of writers 
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Ingredients for lock free algorithms 

•  Atomic operations – sizes matter, look for wider support 

•  Memory ordering operations – Memory barriers or C11 atomics 

•  Orderings by themselves are not enough. Need to identify the ‘payload’ and 

‘guard’ 

•  Payload – the data being propagated from writer to reader, accesses are not 

required to be atomic 

•  Guard – Protects access to the payload, accesses need to be atomic 

•  Synchronizes with relationship between writer and reader 
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Ingredients for lock free algorithms 

•  Data structure specific challenges 

•  Re-claiming memory 

•  Readers continue to reference an entry in the data structure even the after 

delete 

•  Memory cannot be ‘freed’ immediately after ‘delete’ 

•  Delete – Remove the reference to memory/entry 

•  Free – Returning the memory/entries to free pool 

•  Mechanisms are required to identify when to ‘free’ the entry/memory 
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Design 

•  Atomic Operations – relying on 32b operations 

•  Memory orderings – working with C11 atomic functions 
•  Payload 1 – key (stored in key store) 
•  Guard 1 – pdata (stored in key store) 
•  Payload 2 - current signature and alternate signature (stored in bucket entry) 
•  Guard 2 – Index to {key, pdata} entry in the key store (stored in bucket entry) 
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Design – Ordering Mem Operations – 
Hash Add/Lookup 
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Design – Ordering Mem Operations – 
Hash Update/Lookup 
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This forces us to have 2 sets of 
payloads and guards. 

 

If hash update is changed to 
allocate a new key entry 
from key store, memory 
orderings can be simplified. 
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Design – Data Structure Specific Challenge 
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•  Hash add can move entries to their alternate positions 

•  Due to concurrent adds, reader might not find the entry even though it is 
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Design – Data Structure Specific Challenge 

Writer Reader P S 

Lookup Fails 

Move to primary 

Entry is in 
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•  Solution uses a global counter 

•  Counter indicates to the reader that the table has changed 
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•  Entry present but not moving – entry is found 
immediately 

•  Entry present but moving – reader has to chase it 

•  Entry not present – Repeats till the move stops – 

Can be improved by using bucket counter 
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Re-claiming Memory – TQS 

•  Thread Quiescent State (TQS) - Any place in the code where the thread does not 
hold a reference to shared memory 
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while	(1)	loop		
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Reader	Thread	1	
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T	4	

Time	

Critical Sections – 
reference shared 
memory in D1, D2 and 
D3 data structures 

Quiescent states – do 
not reference any 
shared memory. 

Critical	Section	

Quiescent states for D1 
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Re-claiming Memory – Delete/Free 

Free the memory after every thread 
has gone through at least 1 quiescent 
state 
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still referencing it 
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D2 



14 

Re-claiming Memory – rte_tqs library 

•  rte_tqs library 

•  Provides the ability to check if a set of reader threads have entered at least 1 

quiescent state 

•  Goals 

•  Provide flexibility to check the quiescent state 

Ø  Single data structure, a group of data structures or any application defined granularity  

•  Ability to check the quiescent state of a given set/all of readers 

•  Ability to check quiescent state synchronously 

•  Ability to check quiescent state at a later point 
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Re-claiming Memory – rte_tqs library 

•  APIs 

•  rte_tqs_create – creates a TQS variable 

•  rte_tqs_start – triggers the readers to inform the writer about completion of 

‘n’ number of quiescent states 

•  rte_tqs_get – checks if the threads have passed through ‘n’ number of 

quiescent states 

•  rte_tqs_update – called by the data plane threads to update the tqs state 

•  rte_tqs_delete – free tqs checker entry 
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Plans for upstreaming 

•  Lock Free RW concurrency patch will be sent to mailing list for 

review (beginning of next week) – Targeting 18.11 

•  TQS library – High Level Design, API definition - Done 

•  Coding/Testing need to happen – Targeting Q4 for 1st patch 



Questions? 
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Scaling with Lock Free RW concurrency 

•  Numbers with patch 
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