
x

Extending DPDK Flow Classification Libraries
for Determinism & Cloud Usages
SAMEH GOBRIEL
INTEL LABS

2

Contributors

•  Yipeng Wang yipeng1.wang@intel.com

•  Ren Wang ren.wang@intel.com

•  Charlie Tai charlie.tai@intel.com

•  And thanks for all the inputs from Bruce Richardson, Pablo De Lara Guarch, Cristian Dumitrescu and John
Mcnamara.

3

Agenda

•  Overview of Flow Classification Libraries in DPDK
•  Hash Library
•  EFD (Elastic Flow Distributor) Library
•  Membership Library

•  Recent optimizations for rte_hash in DPDK v18.08

•  Upcoming optimizations for rte_hash targeting DPDK v18.11

•  Cloud Workloads and Membership Library Research Direction

8212 KM = 5103 Miles

4

Flow Classification 10,000 ft.

•  A flow-table of millions of keys

•  For an incoming packet, a lookup
key is formed

•  The flow-table is looked up and if
there is a match, the correct value/
action is retrieved.

Key1 Value	1

Key2

Key3

Value	2

Value	3

KeyN Value	N

hdr Payload

Key

5

Flow Classification 10,000 ft.

•  Because of huge number of flows, typically
flow-table is optimized for a “miss”.

•  To minimize full key comparison cost, flow
tables can store signatures (shorter than full
key).

•  Signatures are calculated by hashing the full
key

•  When a signature match occurs the full key is
compared and if matched the value/action is
retrieved.

Key1 Value	1

Key2

Key3

Value	2

Value	3

KeyN Value	N

hdr Payload

Key H(.) sign

sign1

sign2

sign3

signA signF

signD signN

signE signB

6

DPDK Flow Classification Libraries

Hash	Library EFD	LibraryMembership	Library

Henry Miller
American Writer

(1891 – 1980)

“Confusion is a word we
have invented for an
order which is not yet

understood”
•  Each has for their own usages and applications.
•  They differ basically in what we store in the

flow-table, and hence, whether false positives
are allowed

•  Each library is designed to provide the best
performance for its intended usage.

7

DPDK Flow Classification Libraries

•  Both signature and full keys are stored.
•  Used for “exact match” flow tables

•  No False positive or false negatives
(100% sure when we miss that we
haven’t seen this key before, and 100%
sure when hit that the associated value
is assigned to this specific key).

Hash	Library
Key1 Value	1

Key2

Key3

Value	2

Value	3

KeyN Value	N

hdr Payload

Key H(.) sign

sign1

sign2

sign3

signA signF

signD signN

signE signB

8

DPDK Flow Classification Libraries

•  Membership library has many modes (bloom filter,
cache, distributer, ..etc.)

•  High level it can be though of as a flow table only
storing signatures but drops the full keys.

•  It is used in application where small percentage of
false positives can be tolerated (faster than using
hash table for these applications)

•  Example applications: web caching, flow statistics,
signature matching, object indexing, …etc.

Membership	Library

Value	1

hdr Payload

Key H(.) sign

sign1

sign2

sign3

signA signF

signD signN

signE signB

Value	2

Value	3

9

EFD	Library

DPDK Flow Classification Libraries

•  EFD doesn’t store any signature or key, Essentially given a
key it maps it to the assigned value

•  Based on perfect hashing, tries a lot of hash functions, until it
finds one that maps the group of keys to the designated
values. Stores only the hash function index

•  It can’t differentiate a new key from a previously seen key,
given any key a value is returned. (if the key has been seen
before the value will be correct).

•  Example applications: EPC, workload mapping, load
balancing… etc.

Key

hdr Payload

H(.)

h1,	h2,	….	hn	

value

FD

0

4

8

12 Bucket

14

10

Agenda

ü  Overview of Flow Classification Libraries in DPDK
ü  Hash Library
ü  EFD (Elastic Flow Distributor) Library
ü  Membership Library

•  Recent optimizations for rte_hash in DPDK v18.08

•  Upcoming optimizations for rte_hash targeting DPDK v18.11

•  Cloud Workloads and Membership Library Research Direction

11

DPDK RTE Hash Library

•  Library is based on Cuckoo Hashing

•  Provides very good table utilization
•  Denser tables fit in cache.
•  Can scale to millions of entries.
•  Significant throughput improvement

B C

D

F

F

G

E

A

IP	A IP	H

IP	P

IP	J IP	B

IP	Q

IP	D IP	W

IP	Y

IP	Z

IP	X

1

2

3

H1 H2

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Traditional Hash
1 Hash Function

Traditional Hash
2 Hash Functions

Cuckoo Hashing

Avg. Table Utilization
(1M random key inserts)

38%

75%

98%

12

RTE Hash V18.08 with Read/Write Concurrency

•  Especially at high table load, one insert, can cause many keys
to get displaced.

•  Cuckoo insert path can get very long.

•  In earlier DPDK versions, because the writers are changing the
content of the buckets, no concurrent readers can go through
until writers finish updating

•  No R/W Concurrency à Slow down Lookups operations.

a * * *

e * * *

s * * *

x * * *

k * * *

f * * *
d* * *

t * * *

* ∅

Write	y

Cuckoo Insert Path:
a➝e➝s➝x➝k➝f➝d➝t➝∅

13

RTE Hash V18.08 with Read/Write Concurrency

•  Using Intel TSX, the h/w monitors every
cache line and if a reader is reading an
updated cache line it rolls back
execution.

Coarse Grained Locks

•  Limited Concurrency

•  Threads are serialized
in critical section

TSX Hardware Concurrency

Detect

Roll	Back

•  Hardware monitors cache
lines.

•  When data conflict is
detected, execution is rolled
back

0	

1	

2	

3	

4	

2	 4	 8	

Sp
ee
du

p	

Core	Count		
(half	cores	are	reading	while	half	are	simulatneously	wrting)	

Normalized	Lookup	Speedup	

Traditional	Locking	
RTE-hash	V18.08	(with	TSX)	

14

RTE Hash Upcoming Optimizations for V18.11
Add Extended Table Concept to Handle

Insertion Failures

Telco Reliability

•  Native Cuckoo Hash has a small percentage of insertion
failure.

•  Added a hierarchical approach for an extended table in case
of insertion failure:

•  Dropping flows is not acceptable for telco workloads
•  Run-time flow table resizing is too slow for workload.

Provide 100% Insertion Guarantee
needed to Support Telco Workloads

Key	X

H1

A1 2

3

B 	YC

H2

Z D FE

G H

Z

	Y

Extended

97.50%	

98.00%	

98.50%	

99.00%	

99.50%	

100.00%	

100.50%	

Average	Table	Utilization	

Flow	Insertion	Performance	

Default	DPDK	

Upcoming	Optimization	(with	
Extended	Table)		

15

Agenda

ü  Overview of Flow Classification Libraries in DPDK
ü  Hash Library
ü  EFD (Elastic Flow Distributor) Library
ü  Membership Library

ü  Recent optimizations for rte_hash in DPDK v18.08

ü  Upcoming optimizations for rte_hash targeting DPDK v18.11

•  Cloud Workloads and Membership Library Research Direction

16

NoSQL Big Data stores

§  key-based queries: Put/Get

Get(k)àv�
Put(k,v)�

17

Write (sub ms)

Commit log

Mem Store

C1

C2

memory

disk

Flush
(memstoreà

disk store)

Commit log’

Mem Store’

C1

C2

memory

disk

C3

merge

Read (~10ms)

•  LSM Tree = a in-memory store + several on-disk stores
•  Writes go to a commit log (seq. IO) and in-memory store –

update not in-place, FAST
•  Memstore periodically pushed to disk
•  Reads go to mem+disk stores (random IO)-- SLOW
•  On-disk stores periodically compacted to save space & speedup

read

write/inserts

re
ad

s

Slow Fast

Sl
ow

Fa

st

B+tree (RDB)

logging

LSM tree (HBase)

[O'Neil, Acta Informatica’96]

v1

v2

v3

Commit log’

Mem Store’

C1’

memory

disk

compact
(merge disk

stores)

V1,2,3

Log Structured Merge (LSM) Trees – High Level

18

Using Membership Library (Vector Bloom Filter)

Element

BF-1

h1,	h2	..	hk

BF-2 BF-X BF-L

Hashing	for	lookup/Insertion	into	a	
vector	of	BFs	happens	once

Lookup/Insertion	is	done	in	the	series	of	BFs,	vector	processing	optimized	in	DPDK	Lib.

Server
Memory

Disk

Memtable

Commit Log

SSTable 3

SSTable 2

SSTable 1

SSTable

Data Block
(64 K) Index

Data Block
(64 K)

…

Bloom
Filter

•  Problem: Reads can cause a lot of disk access for all
the SSTables not in memory

•  Solution: Bloom filter, a space efficient probabilistic data
structure to test element membership in a set

•  Most lookups for non-existent rows or columns do not
need to touch disk

DPDK Membership Library provides an optimized
library for vector parallel processing of many

bloom filters simultaneously

19

Extend Membership Library to Range Filters
•  Problem: Range queries is a very important workload for bigdata K-V stores. No current

technology is optimized to efficiently handle range queries.

•  Can we extend membership library to support range filters ??
Range Query

20

Summary – Call for Action

•  An overview of flow classification libraries in DPDK, and when to use each library.
•  Please try testing Membership and EFD libraries in your workload.
•  For certain networking applications and workloads they will outperform hash tables.

•  Recent optimizations RTE-Hash library to support R/W concurrency released in DPDK
V18.08, working towards proposing extended table design in V18.11

•  Please review the patch with the design and provide feedback.
•  Please point out gaps where the RTE-hash doesn’t fit your workload for flow tables.

•  Research direction of cloud workload and Big Data K-V store
•  Looking for collaborators and and developers interested in optimizing their Cloud Workloads using DPDK

libraries.

Questions? SAMEH.GOBRIEL@INTEL.COM

