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Agenda 

•  Overview of Flow Classification Libraries in DPDK 
•  Hash Library  
•  EFD (Elastic Flow Distributor) Library 
•  Membership Library 

•  Recent optimizations for rte_hash in DPDK v18.08 

•  Upcoming optimizations for rte_hash targeting DPDK v18.11 

•  Cloud Workloads and Membership Library Research Direction 

8212 KM = 5103 Miles 
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Flow Classification 10,000 ft. 

•  A flow-table of millions of keys 

•   For an incoming packet, a lookup 
key is formed 

•  The flow-table is looked up and if 
there is a match, the correct value/
action is retrieved. 

Key1 Value	1

Key2

Key3

Value	2

Value	3

KeyN Value	N

hdr Payload

Key



5 

Flow Classification 10,000 ft. 

•  Because of huge number of flows, typically 
flow-table is optimized for a “miss”. 

•   To minimize full key comparison cost, flow 
tables can store signatures (shorter than full 
key). 

•  Signatures are calculated by hashing the full 
key 

•  When a signature match occurs the full key is 
compared and if matched the value/action is 
retrieved.  

Key1 Value	1

Key2

Key3

Value	2

Value	3

KeyN Value	N

hdr Payload

Key H(.) sign

sign1

sign2

sign3

signA signF

signD signN

signE signB
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DPDK Flow Classification Libraries 

Hash	Library EFD	LibraryMembership	Library

Henry Miller  
American Writer 

(1891 – 1980) 

“Confusion is a word we 
have invented for an 
order which is not yet 

understood” 
•  Each has for their own usages and applications. 
•  They differ basically in what we store in the 

flow-table, and hence, whether false positives 
are allowed 

•   Each library is designed to provide the best 
performance for its intended usage.   
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DPDK Flow Classification Libraries 

•  Both signature and full keys are stored.  
•  Used for “exact match” flow tables 

•  No False positive or false negatives 
(100% sure when we miss that we 
haven’t seen this key before, and 100% 
sure when hit that the associated value 
is assigned to this specific key).  

Hash	Library
Key1 Value	1

Key2

Key3

Value	2

Value	3

KeyN Value	N

hdr Payload

Key H(.) sign

sign1

sign2

sign3

signA signF
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DPDK Flow Classification Libraries 

•  Membership library has many modes (bloom filter, 
cache, distributer, ..etc.) 

•  High level it can be though of as a flow table only 
storing signatures but drops the full keys.  

•  It is used in application where small percentage of 
false positives can be tolerated (faster than using 
hash table for these applications) 

•  Example applications: web caching, flow statistics, 
signature matching, object indexing, …etc.  

Membership	Library

Value	1

hdr Payload

Key H(.) sign

sign1

sign2

sign3

signA signF

signD signN

signE signB

Value	2

Value	3
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EFD	Library

DPDK Flow Classification Libraries 

•  EFD doesn’t store any signature or key, Essentially given a 
key it maps it to the assigned value 

•  Based on perfect hashing, tries a lot of hash functions, until it 
finds one that maps the group of keys to the designated 
values. Stores only the hash function index  

•  It can’t differentiate a new key from a previously seen key, 
given any key a value is returned. (if the key has been seen 
before the value will be correct).  

•  Example applications: EPC, workload mapping, load 
balancing… etc.  

Key

hdr Payload

H(.)

h1,	h2,	….	hn	

value

FD 

0 

4 

8 
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14 



10 

Agenda 

ü  Overview of Flow Classification Libraries in DPDK 
ü  Hash Library  
ü  EFD (Elastic Flow Distributor) Library 
ü  Membership Library 

•  Recent optimizations for rte_hash in DPDK v18.08 

•  Upcoming optimizations for rte_hash targeting DPDK v18.11 

•  Cloud Workloads and Membership Library Research Direction 
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DPDK RTE Hash Library 

•  Library is based on Cuckoo Hashing 

•  Provides very good table utilization 
•  Denser tables fit in cache.  
•  Can scale to millions of entries. 
•  Significant throughput improvement 
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RTE Hash V18.08 with Read/Write Concurrency 

•  Especially at high table load, one insert, can cause many keys 
to get displaced. 

•  Cuckoo insert path can get very long. 

•  In earlier DPDK versions, because the writers are changing the 
content of the buckets, no concurrent readers can go through 
until writers finish updating 

•  No R/W Concurrency à Slow down Lookups operations.  

a * * * 

e * * * 

s * * *

x * * *

k * * *

f * * *
d* * *

t * * *

* ∅ 

Write	y 

Cuckoo Insert Path: 
a➝e➝s➝x➝k➝f➝d➝t➝∅ 
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RTE Hash V18.08 with Read/Write Concurrency 

•  Using Intel TSX, the h/w monitors every 
cache line and if a reader is reading an 
updated cache line it rolls back 
execution.  

Coarse Grained Locks 

•  Limited Concurrency 

•  Threads are serialized 
in critical section 

TSX Hardware Concurrency 

Detect

Roll	Back

•  Hardware monitors cache 
lines. 

•  When data conflict is 
detected, execution is rolled 
back 
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RTE-hash	V18.08	(with	TSX)	
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RTE Hash Upcoming Optimizations for V18.11 
Add Extended Table Concept to Handle 

Insertion Failures 

Telco Reliability 

•  Native Cuckoo Hash has a small percentage of insertion 
failure. 

•  Added a hierarchical approach for an extended table in case 
of insertion failure: 

•  Dropping flows is not acceptable for telco workloads 
•  Run-time flow table resizing is too slow for workload. 

Provide 100% Insertion Guarantee 
needed to Support Telco Workloads 

Key	X
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Flow	Insertion	Performance	

Default	DPDK	

Upcoming	Optimization	(with	
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Agenda 

ü  Overview of Flow Classification Libraries in DPDK 
ü  Hash Library  
ü  EFD (Elastic Flow Distributor) Library 
ü  Membership Library 

ü  Recent optimizations for rte_hash in DPDK v18.08 

ü  Upcoming optimizations for rte_hash targeting DPDK v18.11 

•  Cloud Workloads and Membership Library Research Direction 
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NoSQL Big Data stores 

§  key-based queries: Put/Get 

Get(k)àv�
Put(k,v)�
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Write (sub ms) 

Commit log 

Mem Store 

C1  

C2  

memory 

disk 

Flush 
(memstoreà  

disk store) 

Commit log’ 

Mem Store’ 

C1  

C2  

memory 

disk 

C3  

merge 

Read (~10ms) 

•  LSM Tree = a in-memory store + several on-disk stores 
•  Writes go to a commit log (seq. IO) and in-memory store – 

update not in-place, FAST 
•  Memstore periodically pushed to disk 
•  Reads go to mem+disk stores (random IO)-- SLOW 
•  On-disk stores periodically compacted to save space & speedup 
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Log Structured Merge (LSM) Trees – High Level 
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Using Membership Library (Vector Bloom Filter) 

Element

BF-1

h1,	h2	..	hk

BF-2 BF-X BF-L

Hashing	for	lookup/Insertion	into	a	
vector	of	BFs	happens	once

Lookup/Insertion	is	done	in	the	series	of	BFs,	vector	processing	optimized	in	DPDK	Lib.

Server 
Memory 

Disk 

Memtable 

Commit Log 

SSTable 3 

SSTable 2 

SSTable 1 

SSTable 

Data Block 
(64 K) Index 

Data Block 
(64 K) 

…     

Bloom  
Filter 

•  Problem: Reads can cause a lot of disk access for all 
the SSTables not in memory  

•  Solution: Bloom filter, a space efficient probabilistic data 
structure to test element membership in a set  

•  Most lookups for non-existent rows or columns do not 
need to touch disk 

DPDK Membership Library provides an optimized 
library for vector parallel processing of many 

bloom filters simultaneously 
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Extend Membership Library to Range Filters 
•  Problem: Range queries is a very important workload for bigdata K-V stores. No current 

technology is optimized to efficiently handle range queries.  

•  Can we extend membership library to support range filters ??  
Range Query 
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Summary – Call for Action 

•  An overview of flow classification libraries in DPDK, and when to use each library.  
•  Please try testing Membership and EFD libraries in your workload. 
•  For certain networking applications and workloads they will outperform hash tables. 

•   Recent optimizations RTE-Hash library to support R/W concurrency released in DPDK 
V18.08, working towards proposing extended table design in V18.11 

•  Please review the patch with the design and provide feedback. 
•  Please point out gaps where the RTE-hash doesn’t fit your workload for flow tables.  

•  Research direction of cloud workload and Big Data K-V store 
•  Looking for collaborators and and developers interested in optimizing their Cloud Workloads using DPDK 

libraries.  



Questions? SAMEH.GOBRIEL@INTEL.COM 


