
rte_security: An update and introducing
PDCP

Akhil Goyal (NXP)

Hemant Agrawal (NXP)

DPDK Summit – Dublin- 2018

Agenda

 Rte_security – A brief recap

 PDCP - Introduction

 Rte_security – Updates for PDCP

 Protocol Error Handling

 Q&A

rte_security A Recap

rte_security – A brief recap

 Framework for management and provisioning of hardware acceleration of
security protocols.

 Generic APIs to manage security sessions.

 Net/Crypto device PMD initializes a security context which is used to access
security operations on that particular device.

 Rich capabilities discovery APIs

 Currently IP Security (IPsec) protocol is supported.

 Could support a wide variety of protocols/applications

 Enterprise/SMB VPNs — IPsec

 Wireless backhaul — IPsec, PDCP

 Data-center — SSL

 WLAN backhaul — CAPWAP/DTLS

 Control-plane options for above — PKCS, RNG

Net PMD

Security Library

Crypto PMD

A multi-device API (Object Model)

<<Interface>>

rte_cryptodev

APIs

 rte_device

cryptodev_ops

rte_cryptodev

- device
- ops

<<Interface>>

rte_security

APIs

<<Interface>>

rte_ethdev

APIs

rte_security_context

- device
- ops

security_ops

 rte_device

eth_dev_ops

rte_ethdev

- device
- ops

security_ops

rte_security_context

- device
- ops

Protocols and actions

 Select the session Protocol: “rte_security_session_protocol”

 IPSEC, MACSEC, SSL, PDCP etc.

 Select the Security Action Type: “rte_security_session_action_type”

 RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO: Inline crypto processing as NIC offload during recv/transmit.

 RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL: Inline security protocol processing as NIC offload during

recv/transmit.

 RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL: Security protocol processing including crypto on a crypto

accelerator.

 Action type can be an input for the given application during session creation

 Based on the action type and other session related information, application configures session
parameters for security offload.

IPSEC - Encrypt Packet Processing

Packet Received
Flow and SPD/SA

Lookup
Pre-Protocol
Processing

•Sequence Number

•Random IV
generation

•Block Cipher
Padding

• Tunnel Header
Preparations
(TOS/ECN/DF etc)

Crypto Processing

•Encryption

•Authentication

Post-Protocol
Processing

IP Header
Addition

L2 process

and
transmission

Security APIs

/* Security context for crypto/eth devices */

struct rte_security_ctx {

void *device;

/**< Crypto/ethernet device attached */

const struct rte_security_ops *ops;

/**< Pointer to security ops for the device */

uint16_t sess_cnt;

/**< Number of sessions attached to this context */

};

/** security session configuration parameters */

struct rte_security_session_conf config = {

.action_type = RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO,

/**< Type of action to be performed on the session */

.protocol = RTE_SECURITY_PROTOCOL_IPSEC,

/**< Security protocol to be configured */

.ipsec = {

.spi = /**< Security Protocol Index */,

.salt = /** Salt value */,

.direction = RTE_SECURITY_IPSEC_SA_DIR_INGRESS,

.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP,

.mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL

},

/**< Configuration parameters for security session */

.crypto_xform = /** crypto transforms */

/**< Security Session Crypto Transformations */

.userdata = /** Application specific User data */

};

 Get device context

void *rte_cryptodev_get_sec_ctx(uint8_t dev_id)

void *rte_eth_dev_get_sec_ctx(uint8_t port_id)

 Create Session
struct rte_security_session * rte_security_session_create(

struct rte_security_ctx *instance,

struct rte_security_session_conf *conf,

struct rte_mempool *mp);

 Update (rte_security_session_update)

 Destroy (rte_security_session_destroy)

 Get Stats (rte_security_session_stats_get)

 Get userdata (rte_security_get_userdata)

 Set pkt metadata (rte_security_set_pkt_metadata)

 Attach session with crypto_op
(rte_security_attach_session)

PDCP Packet Data Convergence Protocol

PDCP- Features

 Transfer of Data (C-Plane and U-Plane) between RLC and Higher U-Plane interface

 Maintenance of PDCP SN(Sequence Number)

 Transfer of SN Status (for use Upon Handover)

 ROHC (Robust Header Compression)

 In-Sequence delivery of Upper Layer PDUs at re-establishment of lower layer

 Elimination of duplicate of lower layer SDUs at re-establishment of lower layer for RLC AM

 Ciphering and Deciphering of C-Plane and U-Plane data

 Integrity Protection and Integrity verification of C-Plane Data

 Timer based Discard

 Duplicate Discard

Where PDCP fits in LTE Radio Protocol stack??

PDCP sublayer functional view

Radio Interface (Uu)

UE/E-UTRAN E-UTRAN/UE

Transmitting

PDCP entity

Ciphering

Header Compression (u-plane

only)

Receiving

PDCP entity

Sequence numbering

Integrity Protection

(c-plane only)

Add PDCP header

Header Decompression (u-

plane only)

Deciphering

Remove PDCP Header

In order delivery and duplicate

detection (u-plane only)

Integrity Verification

(c-plane only)

Packets associated

to a PDCP SDU

Packets associated

to a PDCP SDU

Packets not

associated to a

PDCP SDU

Packets not

associated to a

PDCP SDU

Integrity protection and verification

 Pure computation function to protect transmitted data against a non-authorised third-party from
alteration.

 Applies on header and data part of SRB1 and SRB2 PDU in CP.

 Security Control Information Element “IntegrityProtAlgorithm ” of RRC contain 4 bit field:

 ‘0001’ – SNOW 3G based algorithm (128-EIA1)

 ‘0010’ – AES based algorithm (128-EIA2)

EIA KEY

MAC -I Sender

COUNT DIRECTION

MESSAGE BEARER-ID

EIA

XMAC -I

COUNT DIRECTION

MESSAGE BEARER-ID

KEY

Receiver

Ciphering and Deciphering

 CP: Ciphers/deciphers data part and MAC-I of PDCP data PDU.

 UP: Ciphers/deciphers data part of PDCP data PDU.

 Algorithm common for CP and UP

 Security Control Information Element “CipheringAlgorithm ”of RRC contain 4 bit field:

 ‘0000’ – no ciphering (EPS Encryption Algo, EEA0)

 ‘0001’ – SNOW 3G based algorithm (128-EEA1)

 ‘0010’ – AES based algorithm (128-EEA2)

PLAINTEXT

BLOCK

EEA

COUNT DIRECTION

BEARER LENGTH

KEY

KEYSTREAM

BLOCK

CIPHERTEXT

BLOCK

EEA

COUNT DIRECTION

BEARER LENGTH

KEY

KEYSTREAM

BLOCK

PLAINTEXT

BLOCK

Sender

Receiver

Header compression/decompression

 Applies on U-plane PDCP SDU using RoHC framework

 Compression principles used:

 Remove redundancy between header field values within
packets.

 Remove redundancy between consecutive packets
belonging to same flow.

 Generates two types of output data:

 Compressed packets, each associated with one PDCP SDU.

 Standalone interspersed packets, ROHC feedback packet,
not associated with a PDCP SDU

PDCP sequence number options

 Depending on the type of packet, different
Sequence numbers are chosen.

 Control plane PDCP Data PDU (5 Bits)

 User plane PDCP Data PDU with long PDCP
SN (12 bits)

 User plane PDCP Data PDU with short
PDCP SN (7 bits)

 User plane PDCP Data PDU with extended
PDCP SN (15 bits)

PDCP – Basic / Complicated

 PDCP can do ciphering, integrity, header compression.

 But it may have certain messages which do not require any ciphering, integrity,
header compression.

 It can be as simple as null – cipher, null – auth, no header compression

 It can be as complicated as cipher (with ZUC, snow-3g) and auth (with AES-CMAC, ZUC
etc)

 PDCP has evolved from basic Release 8 to complicated Release 13 of 3GPP.

Current proposal for rte_security is for supporting cipher and auth operations with PDCP
header(lookaside)

rte_security -revisit Updates for PDCP

rte_security – Update for PDCP

 Create PDCP security session using rte_security_session_create() with updated

session configuration as follows:

struct rte_security_session_conf {

enum rte_security_session_action_type action_type; /**< Type of action to be performed on the session */

enum rte_security_session_protocol protocol; /**< Security protocol to be configured */

RTE_STD_C11

union {

struct rte_security_ipsec_xform ipsec; /**< IPSec specific configurations */

struct rte_security_macsec_xform macsec; /**< macsec Specific configurations */

struct rte_security_pdcp_xform pdcp; /**< PDCP specific configurations */

}; /**< Configuration parameters for security session */

struct rte_crypto_sym_xform *crypto_xform; /**< Security Session Crypto Transformations */

void *userdata; /**< Application specific userdata to be saved with session */

};

 Here protocol should be RTE_SECURITY_PROTOCOL_PDCP.

PDCP Configuration

/**

* PDCP security association configuration data.

*

* This structure contains data required to create a PDCP security session.

*/

struct rte_security_pdcp_xform {

int8_t bearer; /**< PDCP bearer ID */

enum rte_security_pdcp_domain domain; /** < PDCP mode of operation: Control or data */

enum rte_security_pdcp_direction pkt_dir; /**< PDCP Frame Direction 0:UL 1:DL */

enum rte_security_pdcp_sn_size sn_size; /**< Sequence number size, 5/7/12/15 */

int8_t hfn_ovd; /**< Overwrite HFN per operation 0:disable,1:enable */

uint32_t hfn; /**< Hyper Frame Number */

uint32_t hfn_threshold; /**< HFN Threshold for key renegotiation */

};

PDCP Capabilities Example

{ /* PDCP Lookaside Protocol offload Data Plane */

.action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,

.protocol = RTE_SECURITY_PROTOCOL_PDCP,

.pdcp = {

.domain = RTE_SECURITY_PDCP_MODE_DATA,

},

.crypto_capabilities = pdcp_capabilities

},

{ /* PDCP Lookaside Protocol offload Control Plane */

.action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,

.protocol = RTE_SECURITY_PROTOCOL_PDCP,

.pdcp = {

.domain = RTE_SECURITY_PDCP_MODE_CONTROL,

},

.crypto_capabilities = pdcp_capabilities

},

static const struct rte_cryptodev_capabilities pdcp_capabilities[] =

{

{ /* SNOW 3G (UIA2) */

.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,

{.sym = {

.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,

{.auth = {

.algo = RTE_CRYPTO_AUTH_SNOW3G_UIA2,

.block_size = 16,

.key_size = {

.min = 16,

.max = 16,

.increment = 0

},

.digest_size = {

.min = 4,

.max = 4,

.increment = 0

},

.iv_size = {

.min = 16,

.max = 16,

.increment = 0

}

}, }

}, }

},

}

API Sequence

Security
Instance

NET/CRYPTO
PMD

user

ìnstance->ops->session_create()

rte_flow(flow,action=sec(sec_sess)

allocate SA
entry

sec_sess

 rte_security_session_create()

set parameters in
security_session_conf

dev->flow_ops->flow_create
program classification table

program SA to hw

[inline crypto/inline protocol]

alt

HW

rte_security – Error handling

 Handling for protocol errors

 Anti-replay errors, Sequence number overflow errors

 For inline protocol – rte_eth_events can be used to pass error information to the application

 For look-aside – Crypto errors can be extended for security errors in rte_crypto_op_status

Summary

 Rte_security can be used as a framework to support various security protocols.

 PDCP protocol is briefly discussed in this presentation

 Basic API sequence and data flow shall remain same for every protocol.

 Updates for PDCP are floated on the mailing list. Please have a look.

 PMD owners supporting PDCP shall come up and send updates for there drivers.

Future Work

 Header Compression/Decompression(RoHC) support for PDCP

 Inline crypto/protocol implementation for PDCP

 Multi process support

 Enable Event based security sessions

 Test application for PDCP

 Software equivalent enablement

 It could be possible to offer software equivalent processing under this API, may or may not be
desirable depending on protocol and it’s processing overhead.

Questions?
<Akhil Goyal, Hemant Agrawal>

<akhil.goyal@nxp.com,
hemant.agrawal@nxp.com>

