
rte_security: An update and introducing
PDCP

Akhil Goyal (NXP)

Hemant Agrawal (NXP)

DPDK Summit – Dublin- 2018

Agenda

 Rte_security – A brief recap

 PDCP - Introduction

 Rte_security – Updates for PDCP

 Protocol Error Handling

 Q&A

rte_security A Recap

rte_security – A brief recap

 Framework for management and provisioning of hardware acceleration of
security protocols.

 Generic APIs to manage security sessions.

 Net/Crypto device PMD initializes a security context which is used to access
security operations on that particular device.

 Rich capabilities discovery APIs

 Currently IP Security (IPsec) protocol is supported.

 Could support a wide variety of protocols/applications

 Enterprise/SMB VPNs — IPsec

 Wireless backhaul — IPsec, PDCP

 Data-center — SSL

 WLAN backhaul — CAPWAP/DTLS

 Control-plane options for above — PKCS, RNG

Net PMD

Security Library

Crypto PMD

A multi-device API (Object Model)

<<Interface>>

rte_cryptodev

APIs

 rte_device

cryptodev_ops

rte_cryptodev

- device
- ops

<<Interface>>

rte_security

APIs

<<Interface>>

rte_ethdev

APIs

rte_security_context

- device
- ops

security_ops

 rte_device

eth_dev_ops

rte_ethdev

- device
- ops

security_ops

rte_security_context

- device
- ops

Protocols and actions

 Select the session Protocol: “rte_security_session_protocol”

 IPSEC, MACSEC, SSL, PDCP etc.

 Select the Security Action Type: “rte_security_session_action_type”

 RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO: Inline crypto processing as NIC offload during recv/transmit.

 RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL: Inline security protocol processing as NIC offload during

recv/transmit.

 RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL: Security protocol processing including crypto on a crypto

accelerator.

 Action type can be an input for the given application during session creation

 Based on the action type and other session related information, application configures session
parameters for security offload.

IPSEC - Encrypt Packet Processing

Packet Received
Flow and SPD/SA

Lookup
Pre-Protocol
Processing

•Sequence Number

•Random IV
generation

•Block Cipher
Padding

• Tunnel Header
Preparations
(TOS/ECN/DF etc)

Crypto Processing

•Encryption

•Authentication

Post-Protocol
Processing

IP Header
Addition

L2 process

and
transmission

Security APIs

/* Security context for crypto/eth devices */

struct rte_security_ctx {

void *device;

/**< Crypto/ethernet device attached */

const struct rte_security_ops *ops;

/**< Pointer to security ops for the device */

uint16_t sess_cnt;

/**< Number of sessions attached to this context */

};

/** security session configuration parameters */

struct rte_security_session_conf config = {

.action_type = RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO,

/**< Type of action to be performed on the session */

.protocol = RTE_SECURITY_PROTOCOL_IPSEC,

/**< Security protocol to be configured */

.ipsec = {

.spi = /**< Security Protocol Index */,

.salt = /** Salt value */,

.direction = RTE_SECURITY_IPSEC_SA_DIR_INGRESS,

.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP,

.mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL

},

/**< Configuration parameters for security session */

.crypto_xform = /** crypto transforms */

/**< Security Session Crypto Transformations */

.userdata = /** Application specific User data */

};

 Get device context

void *rte_cryptodev_get_sec_ctx(uint8_t dev_id)

void *rte_eth_dev_get_sec_ctx(uint8_t port_id)

 Create Session
struct rte_security_session * rte_security_session_create(

struct rte_security_ctx *instance,

struct rte_security_session_conf *conf,

struct rte_mempool *mp);

 Update (rte_security_session_update)

 Destroy (rte_security_session_destroy)

 Get Stats (rte_security_session_stats_get)

 Get userdata (rte_security_get_userdata)

 Set pkt metadata (rte_security_set_pkt_metadata)

 Attach session with crypto_op
(rte_security_attach_session)

PDCP Packet Data Convergence Protocol

PDCP- Features

 Transfer of Data (C-Plane and U-Plane) between RLC and Higher U-Plane interface

 Maintenance of PDCP SN(Sequence Number)

 Transfer of SN Status (for use Upon Handover)

 ROHC (Robust Header Compression)

 In-Sequence delivery of Upper Layer PDUs at re-establishment of lower layer

 Elimination of duplicate of lower layer SDUs at re-establishment of lower layer for RLC AM

 Ciphering and Deciphering of C-Plane and U-Plane data

 Integrity Protection and Integrity verification of C-Plane Data

 Timer based Discard

 Duplicate Discard

Where PDCP fits in LTE Radio Protocol stack??

PDCP sublayer functional view

Radio Interface (Uu)

UE/E-UTRAN E-UTRAN/UE

Transmitting

PDCP entity

Ciphering

Header Compression (u-plane

only)

Receiving

PDCP entity

Sequence numbering

Integrity Protection

(c-plane only)

Add PDCP header

Header Decompression (u-

plane only)

Deciphering

Remove PDCP Header

In order delivery and duplicate

detection (u-plane only)

Integrity Verification

(c-plane only)

Packets associated

to a PDCP SDU

Packets associated

to a PDCP SDU

Packets not

associated to a

PDCP SDU

Packets not

associated to a

PDCP SDU

Integrity protection and verification

 Pure computation function to protect transmitted data against a non-authorised third-party from
alteration.

 Applies on header and data part of SRB1 and SRB2 PDU in CP.

 Security Control Information Element “IntegrityProtAlgorithm ” of RRC contain 4 bit field:

 ‘0001’ – SNOW 3G based algorithm (128-EIA1)

 ‘0010’ – AES based algorithm (128-EIA2)

EIA KEY

MAC -I Sender

COUNT DIRECTION

MESSAGE BEARER-ID

EIA

XMAC -I

COUNT DIRECTION

MESSAGE BEARER-ID

KEY

Receiver

Ciphering and Deciphering

 CP: Ciphers/deciphers data part and MAC-I of PDCP data PDU.

 UP: Ciphers/deciphers data part of PDCP data PDU.

 Algorithm common for CP and UP

 Security Control Information Element “CipheringAlgorithm ”of RRC contain 4 bit field:

 ‘0000’ – no ciphering (EPS Encryption Algo, EEA0)

 ‘0001’ – SNOW 3G based algorithm (128-EEA1)

 ‘0010’ – AES based algorithm (128-EEA2)

PLAINTEXT

BLOCK

EEA

COUNT DIRECTION

BEARER LENGTH

KEY

KEYSTREAM

BLOCK

CIPHERTEXT

BLOCK

EEA

COUNT DIRECTION

BEARER LENGTH

KEY

KEYSTREAM

BLOCK

PLAINTEXT

BLOCK

Sender

Receiver

Header compression/decompression

 Applies on U-plane PDCP SDU using RoHC framework

 Compression principles used:

 Remove redundancy between header field values within
packets.

 Remove redundancy between consecutive packets
belonging to same flow.

 Generates two types of output data:

 Compressed packets, each associated with one PDCP SDU.

 Standalone interspersed packets, ROHC feedback packet,
not associated with a PDCP SDU

PDCP sequence number options

 Depending on the type of packet, different
Sequence numbers are chosen.

 Control plane PDCP Data PDU (5 Bits)

 User plane PDCP Data PDU with long PDCP
SN (12 bits)

 User plane PDCP Data PDU with short
PDCP SN (7 bits)

 User plane PDCP Data PDU with extended
PDCP SN (15 bits)

PDCP – Basic / Complicated

 PDCP can do ciphering, integrity, header compression.

 But it may have certain messages which do not require any ciphering, integrity,
header compression.

 It can be as simple as null – cipher, null – auth, no header compression

 It can be as complicated as cipher (with ZUC, snow-3g) and auth (with AES-CMAC, ZUC
etc)

 PDCP has evolved from basic Release 8 to complicated Release 13 of 3GPP.

Current proposal for rte_security is for supporting cipher and auth operations with PDCP
header(lookaside)

rte_security -revisit Updates for PDCP

rte_security – Update for PDCP

 Create PDCP security session using rte_security_session_create() with updated

session configuration as follows:

struct rte_security_session_conf {

enum rte_security_session_action_type action_type; /**< Type of action to be performed on the session */

enum rte_security_session_protocol protocol; /**< Security protocol to be configured */

RTE_STD_C11

union {

struct rte_security_ipsec_xform ipsec; /**< IPSec specific configurations */

struct rte_security_macsec_xform macsec; /**< macsec Specific configurations */

struct rte_security_pdcp_xform pdcp; /**< PDCP specific configurations */

}; /**< Configuration parameters for security session */

struct rte_crypto_sym_xform *crypto_xform; /**< Security Session Crypto Transformations */

void *userdata; /**< Application specific userdata to be saved with session */

};

 Here protocol should be RTE_SECURITY_PROTOCOL_PDCP.

PDCP Configuration

/**

* PDCP security association configuration data.

*

* This structure contains data required to create a PDCP security session.

*/

struct rte_security_pdcp_xform {

int8_t bearer; /**< PDCP bearer ID */

enum rte_security_pdcp_domain domain; /** < PDCP mode of operation: Control or data */

enum rte_security_pdcp_direction pkt_dir; /**< PDCP Frame Direction 0:UL 1:DL */

enum rte_security_pdcp_sn_size sn_size; /**< Sequence number size, 5/7/12/15 */

int8_t hfn_ovd; /**< Overwrite HFN per operation 0:disable,1:enable */

uint32_t hfn; /**< Hyper Frame Number */

uint32_t hfn_threshold; /**< HFN Threshold for key renegotiation */

};

PDCP Capabilities Example

{ /* PDCP Lookaside Protocol offload Data Plane */

.action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,

.protocol = RTE_SECURITY_PROTOCOL_PDCP,

.pdcp = {

.domain = RTE_SECURITY_PDCP_MODE_DATA,

},

.crypto_capabilities = pdcp_capabilities

},

{ /* PDCP Lookaside Protocol offload Control Plane */

.action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,

.protocol = RTE_SECURITY_PROTOCOL_PDCP,

.pdcp = {

.domain = RTE_SECURITY_PDCP_MODE_CONTROL,

},

.crypto_capabilities = pdcp_capabilities

},

static const struct rte_cryptodev_capabilities pdcp_capabilities[] =

{

{ /* SNOW 3G (UIA2) */

.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,

{.sym = {

.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,

{.auth = {

.algo = RTE_CRYPTO_AUTH_SNOW3G_UIA2,

.block_size = 16,

.key_size = {

.min = 16,

.max = 16,

.increment = 0

},

.digest_size = {

.min = 4,

.max = 4,

.increment = 0

},

.iv_size = {

.min = 16,

.max = 16,

.increment = 0

}

}, }

}, }

},

}

API Sequence

Security
Instance

NET/CRYPTO
PMD

user

ìnstance->ops->session_create()

rte_flow(flow,action=sec(sec_sess)

allocate SA
entry

sec_sess

 rte_security_session_create()

set parameters in
security_session_conf

dev->flow_ops->flow_create
program classification table

program SA to hw

[inline crypto/inline protocol]

alt

HW

rte_security – Error handling

 Handling for protocol errors

 Anti-replay errors, Sequence number overflow errors

 For inline protocol – rte_eth_events can be used to pass error information to the application

 For look-aside – Crypto errors can be extended for security errors in rte_crypto_op_status

Summary

 Rte_security can be used as a framework to support various security protocols.

 PDCP protocol is briefly discussed in this presentation

 Basic API sequence and data flow shall remain same for every protocol.

 Updates for PDCP are floated on the mailing list. Please have a look.

 PMD owners supporting PDCP shall come up and send updates for there drivers.

Future Work

 Header Compression/Decompression(RoHC) support for PDCP

 Inline crypto/protocol implementation for PDCP

 Multi process support

 Enable Event based security sessions

 Test application for PDCP

 Software equivalent enablement

 It could be possible to offer software equivalent processing under this API, may or may not be
desirable depending on protocol and it’s processing overhead.

Questions?
<Akhil Goyal, Hemant Agrawal>

<akhil.goyal@nxp.com,
hemant.agrawal@nxp.com>

