Power Aware Packet Processing

Chris MacNamara, Dave Hunt
DPDK Summit - San Jose – 2017
Why We Are Here

- Drive for data and always on networks

- Opportunity for green DPDK
 - Based on continued polling and varying traffic rates

- Achieve electricity cost saving & increase performance

- Updates to the power management scheme in 17.11
Mapping Power Usage To Network Traffic

Example 24-hour period

For Illustration Purposes Only

Energy Saving Opportunity
Potential to be in scaled down state

Expected or Unexpected
Burst Handling

System % Busy

Example 24-hour period

Network Traffic
Moving To Green DPDK

Evaluation considerations

- Latency
- Loss
- Energy
 - Power
 - State/Draw

Benefits

Platform Power Consumption

- Processor Power
- Other Platform Power

Matching Platform Energy to Network Load
Out of the box frequency management
- Freq Up / Freq Down
- Freq Min / Freq Max

Enable Turbo: Enable Intel® Turbo Boost Technology on the specific lcore
- Core frequency will go to whatever frequency is allowed for that core based on number of active cores on the packet, thermal limits, etc.

Disable Turbo: Disable Intel® Turbo Boost Technology on the specific lcore
- Core frequency will return to the maximum non-turbo frequency, if lower freq required, a further library call is required to scale down, go to minimum, etc.

Power Consumption

<table>
<thead>
<tr>
<th>Power Consumption</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3Fwd</td>
<td></td>
</tr>
<tr>
<td>L3Fwd Power</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Consumption</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3Fwd</td>
<td></td>
</tr>
<tr>
<td>L3Fwd Power</td>
<td></td>
</tr>
</tbody>
</table>
Meeting The Needs Of An On Demand Network

- Scale always on DPDK performance with the network demand

Common challenges
 - Always On
 - Adjust PMD cores frequency to adjust to packet demand
 - Potential to save power drawn per core using frequency scaling
 - Additional savings from sleeping

- Speed of (re)action
 - Challenge: Fast Scale Up to react to increases in n/w traffic
 - Time = queueing/buffering

- Challenge: fast monitor & reaction time
 - Closer to hardware gives faster reaction time

- Move to policy-based control

Apply Power Where and When it’s needed
Elements Of An Ideal Scheme

- A system with a penalty-free reconfiguration capability
- DPDK: Be deliberate & control change, only change when you need to change

- Fast detection at the micro-burst level
- DPDK: Decide on key performance indicators (KPIs)

- Mechanism to determine the compute configuration
- DPDK: Use DPDK APIs to manage

- Power/energy savings with minimum impact to network performance
- DPDK: Toolbox allows fine grained control, network load
In-band Policy Control For Power Mgmt

- Patch Set for 17.11
- Power governor on host
- Takes profiles from Guest
- Scale up/down based on:
 - Traffic Rates
 - Time of Day
 - Workload (next)
- Match compute to network/CPU load
Acknowledgement

- Nemanja Marjanovic
- Rory Sexton
- Konstantin Ananyev
- John Browne
Questions?

Chris MacNamara
chris.macnamara@intel.com

David Hunt
david.hunt@intel.com