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Why yet another CLI? ®

» For many years | have been looking for a simple and easier to use API for
development and production use, but | have not found one ©

» Most of the Command Line interfaces | have seen are too complex or way too
simple or use TCL, Python or some other language to create the interface.

» These languages add a lot of code, plus are not super friendly for embedded apps in
code size

» Others are written in C++ or C, plus they try to do everything like convert strings to
numbers and many other conversions (similar to DPDK’s CommandLine}).

» These conversions and complex structures are not required for many
applications and add a lot of code to the interface.

» So not being able to find one that | liked, | decided to write my own



What makes a good CLI?
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A goal for a CLI is to create a quick and simple easy to use interface for
Developers/Users

» Allowing the developer to add a new command or debug must be quick and simple
Use well known developer constructs to make learning the new interface simple
A CLI should allow for dynamically adding and removing command at run time
Be able to create complexed commands without complex structures
Allow for hierarchical commands instead of a flat set of commands
Make the user interface simple and familiar
Must have autocomplete and history of commands to run or re-run them quickly

Plus a number of other features



CLI Features

» CLI has no global variables, which allows for multiple or different user interfaces
in the same process, e.g. restricted, power and admin users, ...
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CLI support commands, files, aliases and directories

» CLlis designed around a shell/directory like user interface
Callbacks from commands/files use the simple argc/argv function interface
Simple structures to add and remove commands, files, directories
Simple environment variable support, plus help support
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For complex commands, we have the MAP interface to make it simpler

» MAP is a set of ‘printf’ like strings to define commands and how they are parsed/found
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CLI uses a simple shell and directory format for commands/files, which gives
the developer a hierarchy of commands



Testpmd application in DPDK

» The testpmd application in DPDK is used to test and debug DPDK and it has a
LOT of commands

» | decide to convert Testpmd to use the new CLI to test out if it would work out
better

» Old cdline.c file is about: 12K lines of code

» New cli_ cmds.cfile is about: 4.5K lines of code

» It took about two days to add the new CLI commands to testpmd, without
doing a lot of testing ©

» What reduced the line count was removing cmdline structures and reducing the
number of functions (which were required for each command line and variation
of command lines)

» Converting these complex command lines to use CLI’'s MAP style interface



Simple Example of CLI code

» First task is to initialize the command line

interface #include <cli.h>

» Taking just the defaults makes a command it maln(int arge, ohap **EEgY)

line easy {
» The cli_start(const char *msg) if (lcli_create_with_defaults()) {
» If msgis not NULL then print the string to the cli start (NULL);
console on startup _
» When the user types ‘quit’ or control-X cli_destroy();
cli_start() will return }

. . . return O0;
» Gives some basic commands like Is, pwd, }

more, env, echo, history, ...



Example 2 using a tree

#include <cli.h>

static int hi cmd(int argc, char **argv)
{
cli printf(“Hello World!, - %s\n”,

(argc > 1)? argv[1l] % tall?™) s

return 0O;

}

static struct cli tree my tree [] = {
¢_daE =/ bin"),
c cmd(“hi”, hi cmd, “Hello World”),
c_end()

}i

static int mytree(void)
{
if (cli default tree init())
return -1;
if (cli add tree(NULL, my tree))
return -1;
return cli add bin path(“/bin”);

}

int main(int argc, char **argv)
{
if (!cli create with tree(mytree))
cli start(NULL);
cli destroy();

}

return O0;

{




New CLI Summary

» CLI- A Command Line Interface

P Source: http://dpdk.org/browse/draft/dpdk-draft-cli ‘cli’ branch

» Exam ples are at: http://dpdk.org/browse/apps/pktgen-dpdk Also in the source above

» In the DPDK/lib/librte_cli directory are two *.rst files and README file for
more documentation of CLI

» The PKTGEN application is now converted to use the CLI interface
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DEMO DPDK

» A Simple CLI Demo running ina VM



