New CLI for DPDK

Keith Wiles, Intel

DPDK Summit - San Jose — 2017

#DPDKSummit

Why yet another CLI? ®

» For many years | have been looking for a simple and easier to use API for
development and production use, but | have not found one ©

» Most of the Command Line interfaces | have seen are too complex or way too
simple or use TCL, Python or some other language to create the interface.

» These languages add a lot of code, plus are not super friendly for embedded apps in
code size

» Others are written in C++ or C, plus they try to do everything like convert strings to
numbers and many other conversions (similar to DPDK’s CommandLine}).

» These conversions and complex structures are not required for many
applications and add a lot of code to the interface.

» So not being able to find one that | liked, | decided to write my own

What makes a good CLI?

vV v v v v VvV Y

A goal for a CLI is to create a quick and simple easy to use interface for
Developers/Users

» Allowing the developer to add a new command or debug must be quick and simple
Use well known developer constructs to make learning the new interface simple
A CLI should allow for dynamically adding and removing command at run time
Be able to create complexed commands without complex structures
Allow for hierarchical commands instead of a flat set of commands
Make the user interface simple and familiar
Must have autocomplete and history of commands to run or re-run them quickly

Plus a number of other features

CLI Features

» CLI has no global variables, which allows for multiple or different user interfaces
in the same process, e.g. restricted, power and admin users, ...

v

CLI support commands, files, aliases and directories

» CLlis designed around a shell/directory like user interface
Callbacks from commands/files use the simple argc/argv function interface
Simple structures to add and remove commands, files, directories
Simple environment variable support, plus help support

vvyyy

For complex commands, we have the MAP interface to make it simpler

» MAP is a set of ‘printf’ like strings to define commands and how they are parsed/found

v

CLI uses a simple shell and directory format for commands/files, which gives
the developer a hierarchy of commands

Testpmd application in DPDK

» The testpmd application in DPDK is used to test and debug DPDK and it has a
LOT of commands

» | decide to convert Testpmd to use the new CLI to test out if it would work out
better

» Old cdline.c file is about: 12K lines of code

» New cli_ cmds.cfile is about: 4.5K lines of code

» It took about two days to add the new CLI commands to testpmd, without
doing a lot of testing ©

» What reduced the line count was removing cmdline structures and reducing the
number of functions (which were required for each command line and variation
of command lines)

» Converting these complex command lines to use CLI’'s MAP style interface

Simple Example of CLI code

» First task is to initialize the command line

interface #include <cli.h>

» Taking just the defaults makes a command it maln(int arge, ohap **EEgY)

line easy {
» The cli_start(const char *msg) if (lcli_create_with_defaults()) {
» If msgis not NULL then print the string to the cli start (NULL);
console on startup _
» When the user types ‘quit’ or control-X cli_destroy();
cli_start() will return }

. . . return O0;
» Gives some basic commands like Is, pwd, }

more, env, echo, history, ...

Example 2 using a tree

#include <cli.h>

static int hi cmd(int argc, char **argv)
{
cli printf(“Hello World!, - %s\n”,

(argc > 1)? argv[1l] % tall?™) s

return 0O;

}

static struct cli tree my tree [] = {
¢_daE =/ bin"),
c cmd(“hi”, hi cmd, “Hello World”),
c_end()

}i

static int mytree(void)
{
if (cli default tree init())
return -1;
if (cli add tree(NULL, my tree))
return -1;
return cli add bin path(“/bin”);

}

int main(int argc, char **argv)
{
if (!cli create with tree(mytree))
cli start(NULL);
cli destroy();

}

return O0;

{

New CLI Summary

» CLI- A Command Line Interface

P Source: http://dpdk.org/browse/draft/dpdk-draft-cli ‘cli’ branch

» Exam ples are at: http://dpdk.org/browse/apps/pktgen-dpdk Also in the source above

» In the DPDK/lib/librte_cli directory are two *.rst files and README file for
more documentation of CLI

» The PKTGEN application is now converted to use the CLI interface

#DPDKSummit

DEMO DPDK

» A Simple CLI Demo running ina VM

