VFd: an SR-IOV Hypervisor using DPDK

Alex Zelezniak

DPDK Summit Userspace - Dublin- 2017
Despite many improvements, software overlays have fundamental inefficiencies for packet processing workloads. High performance network functions are being realized via hardware virtualization (SR-IOV) for the foreseeable future. SmartNIC and hardware offloads rely on SRIOV as the interface between tenants and the NIC.

Dynamic policy enforcement for needed resource management, security, and reliability in multi-tenant NIC sharing. For example: allow VF to change MAC, enter promiscuous mode if policy permits, etc.

Today, there is no single policy enforcement point that takes on “hypervisor-like” functions for SRIOV NICs. Linux tools for SR-IOV don’t manage dynamic events—e.g., what to do if a VM tries to change MAC or set VLAN at runtime? Also, kernel drivers don’t support resource allocation, configuration, and offload features in a standardized way.

- Steering traffic using multiple VLANs
- QoS (TC)
- VF stats
- BUM traffic management
- Mirroring
- Separate VLAN/MAC anti-spoofing control
- QinQ management
- MAC filtering
VFd: a “hypervisor” for SR-IOV NICs

- Privileged software (driver) performing hypervisor function for SR-IOV network devices
 - Allocate/deallocate VFs
 - Flexibly allocate resources, e.g., queues, QoS classes, to VFs
 - Manage policy, e.g., VLAN steering, QinQ tagging, filtering, mirroring, anti-spoofing, in a single place
 - Configure VFs
 - Collect various PF/VF statistics
 - Flexible, user-space tool

- Unfortunately, we hit some practical snags
 - Several of the functions needed are missing
 - Kernel doesn’t standardize functions that do exist - each NIC vendor implements in their own way
 - No mechanisms for handling runtime events that are policy affecting
 - Many environments often run old kernels, and kernel upgrades is a major activity that could impact vast infrastructure. This impedes fast evolution in this rapidly changing space
Why DPDK?

- User space, rapid evolution
- SR-IOV and DPDK are both tools for high performance, so common target community
- Support from most major modern NICs where SR-IOV is involved
- NFV mindset
VFd architecture

- Runs as a daemon process that can handle static configuration as well as dynamic events
- Backend is DPDK
- Front end tools allowing configuration and gathering statistics
One or more VLAN IDs could be used to steer traffic to the VF

Optionally VLAN ID could be removed on RX and inserted on TX

Traffic classes with one strict-priority queue supported

Packets placed to the appropriate queues based on PCP value

Configurable Min/Max bandwidth values per TC/VF
Uses “experimental” DPDK API

- rte_pmd_ixgbe.h
- rte_pmd_i40e.h
- rte_pmd_bnxt.h

- rte_pmd_[ixgbe|i40e|bnxt]_ping_vfs
- rte_pmd_[ixgbe|i40e|bnxt]_set_vf_mac_anti_spoof
- rte_pmd_[ixgbe|i40e|bnxt]_set_vf_vlan_anti_spoof
- rte_pmd_[ixgbe|i40e|bnxt]_set_vf_vlan_filter
- rte_pmd_[ixgbe|i40e|bnxt]_set_tx_loopback
- rte_pmd_[ixgbe|i40e|bnxt]_set_vf_unicast_promisc
- rte_pmd_[ixgbe|i40e|bnxt]_set_vf_multicast_promisc
- rte_pmd_[ixgbe|i40e|bnxt]_set_vf_mac_addr
- rte_pmd_[ixgbe|i40e|bnxt]_set_vf_vlan_stripq
- rte_pmd_[ixgbe|i40e|bnxt]_set_vf_vlan_insert
- rte_pmd_[ixgbe|i40e|bnxt]_reset_vf_stats
- rte_pmd_[ixgbe|i40e|bnxt]_reset_vf_stats

Move to “Generic” DPDK API
VFd status

- Supports ixgbe, i40e, bnxt devices
- Working on supporting QoS with more NICs
- Adding mirroring
- Improving operational support/troubleshooting
- Other vendors are working to contribute
Future

- Remove “experimental tag” from new API’s?
- Add generic APIs to DPDK?
- Add Netlink/sysfs/procfs to interface Linux tools?
- Variable number of queues per VF?
- Move complexity of VF configuration to the “SR-IOV Hypervisor“ simplifying creation of lightweight, portable VF?
- PF/VF reset/recovery?
- Standardized interface for SmartNIC offloads of hypervisor like functions – e.g., VFd as integration point for OVS, vRouter
- Who would benefit from using it? Cloud platform integrators, vSwitch/router projects, VNF vendors, ...
- Who should think about contributing to it? NIC vendors, vSwitch/router projects, ...
- How can you help?
Acknowledgments

AT&T
- E. Scott Daniels
- Kaustubh Joshi
- Dhanunjaya Ravada
- John Craig

Broadcom
- Ajit Khaparde
- Stephen Hurd
- Venugopala Bhat
- Hoan Do
- Sudheer Vegesna

Intel
- Wenzhuo Lu
- Bernard Iremonger
- Aaron Rowden
- Rahul Shah
- Lian-min Wang
- Jingjing Wu
- Ferruh Yigit
- Qi Z Zhang
- Helin Zhang
Questions?

Alex Zelezniak
alexz@att.com

http://www.github.com/att/vfd