

INTEL® 40GBE ETHERNET CONTROLLER

M Jay & Helin Zhang - Intel DPDK US Summit - San Jose - 2016

About this Document

The performance measurement and analysis of an embedded platform for communication and security processing can be very challenging due to the diverse applications and workload inherent in the platform. The Internet of Things Group (IoTG) and Network Platform Group(NPG) are dedicated to performing lab measurements which will assist customers in understanding the performance of combinations of Intel[®] architecture microprocessors and chipsets.

- This document publishes a set of indicative performance data for selected Intel[®] processors and chipsets. However, the data should be regarded as reference material only and the reader is reminded of the important Disclaimers that appear in this document.
- Intel, Intel Core and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
- Copyright © Intel Corporation 2016. All rights reserved.

^{*} Other names and brands may be claimed as the property of others.

Disclaimers

DPDK

- By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.
- You may not use or facilitate the use of this document in connection with any
- infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.
- INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
- A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
- Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.
- The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.
- Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
- Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

* Other names and brands may be claimed as the property of others.

Optimization Notice

DPDK

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

^{*} Other names and brands may be claimed as the property of others.

Flexible Packet Processing – XL710

- Server Virtualization VMDq for Emulated path; SR-IOV for Direct Assignment
- Network virtualization Overlay stateless offloads for VXLAN, NVGRE, VXLAN GRE
- "Flexible" Add new features after production by upgrading firmware
- Intelligent load distribution for high performance traffic flows Flow Director
- Virtual Bridging support that delivers control & management of virtual I/O
 - Both host-side and switch-side

XL710 Internals

Helin

6

Block Diagram - XL710/X710

Classification – X	XL710 Vs 82599
	Intel® Ethernet Controller XL710
. 82599EB .	Hash function XL710
Toeplitz 40 bytes key	Toeplitz 52 bytes key, Simple XOR, Symmetric (with Simple XOR)
	Hash input set
static, 5-tuple only	flexible, > 10 fields from a packet can be used
	Flexible payload
1 word (2 bytes)	up to 8 words from 3 locations within first 480 bytes for L2-L4
	Flow director
exact and signature match	exact match only, > 10 fields from a packet can be used

NIC Anatomy

DPDK

Packet Context (Packet Digest & Metadata)

* Courtesy of Ronen Chayat

Classification

- Hash filter (RSS): load distribution to multiple queues using hash calculated over packet's field selected by input set. Hash signature extracted to Receive Descriptor.
- Flow Director (FD): pinning flow to the specific queue, extracting payload's data (up to 8 bytes) to Receive Description.
- FD can run in "pass-through" mode. In this mode FD extract data to RXd and then packets are distributed by RSS.
- Tunnel (Clouds) Filters: assign tunnelled packets (VXLAN, VXLAN-GPE, GRE, NVGRE) to a queue/VF

Customer Usage Models- Requirements **DPDK**

M Jay

What issues you see With 3-Tier Traditional Data Center Network?

What Scaling Problems Do You See?

Issues With Traditional 3-Tier Enterprise Data Center Methy DPDK 2) Frame header processing at very high bandwidth- adds more congestion to the network 1)AS Dolo centers Since nor Core designed with switch/router latency in mind, 3-tier networks do not do a good job of handling east west traffic Aggregation Aggregation switch switch ToR switch ToR switch ToR switch ToR switch With Mulli Cores ramping in Performance, Tor switch con't keep ... up with both storage (without dropping) + network Server Server Server Server rack rack rack rack

Larger Switches @ high bandwidth + 13 features => Expensive

40 Gig Advantages - Flat Data Center Networks

VEPA – Consistent Treatment Of All Network DPDK Traffic

VEPA – An Overview

VEPA – XL710

VXLAN – Packet Flow

DPDK

VXLAN encapsulated frame

Question: What is UDP Source Port Used For?

18

NVGRE encapsulated frame

VXLAN	NVGRE
UDP + VXLAN header	Only GRE header
Inner L2 header contains VLAN tag	No VLAN tag in inner L2 Tag
UDP Port for Hash	Reserved 8 bits (Random for uniform distribution) + VSID for Hash

40 GbE - Step by Step Walk Through

Description	Requirement	Reference
What is important in my h/w Platform?	Ensure all the 4 memory channels are populated. AND use –n 4 in the command line also * Note: This is one important element to affect the performance	use "dmidecode -t memory" to check the memory status. Since this is very important please procure additional memory and populate all the memory channels
Where the NIC should be plugged in? And Why?	Use PCIe Gen3 slots, such as Gen3 x8 or Gen3 x16 NUMA considerations	Because PCIe Gen2 slots can't provide enough bandwidth for 2x10G and above.
What needs to be updated in NIC?	Make Sure each NIC has flashed the latest version of NVM/firmware.	Go do downloadcenter.intel.com and search for XL710 NVM Update.It takes you here:https://downloadcenter.intel.com/search?keyword= NVM+Update+Utility+for+Intel%C2%AE+Ethernet+C onverged+Network+Adapter+XL710+%26+X710+Seri es

40 GbE - Step by Step Walk Through

Description	Requirement	Reference
BIOS settings	Refer BIOS Settings	
Linux System Essentials	Real Time Nature of the Process, cgroup	
Huge Page	1) Size of the FIB Table, 2) Locality challenges of packets	TLB Miss, Page Walk
Scheduler	Isolcpus option under title Grub Parameters - Essential Requirement	

BIOS Setting

Menu (Advanced)	BIOS Setting	Required Setting	BIOS default
CPU Configuration ->Advanced			
Power Management			
Configuration			
	Power Technology	Disable	Custom
-> CPU P State Control	ESIT (P-States)	Disable	Enable
-> CPU P State Control	Turbo Mode	Disable	Enable
-> CPU P State Control	P-State Coordination	HW_ALL	HW_ALL
-> CPU C State Control	Turbo Mode	Disable	Enable
-> CPU C State Control	CPU C3 Report	Disable	Enable
-> CPU C State Control	CPU C6 Report	Disable	Enable
-> CPU C State Control	Package C State Limit	[C6 (Retention)]	[C6 (Retention)]
-> CPU C State Control	Enhanced Halt State(C1E)	Disable	Enable
Chipset Configuration			
-> North Bridge -> QPI			
Configuration	Isoc Mode	Disable	Disable
	COD Enable	Disable	Auto
	Early Snoop	Disable	Auto
-> North Bridge -> Memory			
Configuration	Enforce POR	Disable	Auto
	Memory Frequency	2133	Auto
	DRAM RAPL Baseline	Disable	Auto
-> North Bridge -> IIO			
Configuration	Intel VT for Directed I/O (VT-d)	Disable	Enable
PCIe/PCI/PnP Configuration	ASPM	Disable	Disable

40 GbE - Step by Step Walk Through

# Description		Requirement	Reference
•	NICs, special ould be set before is very Important.	For at least DPDK release 1.8, 2.0 and 2.1, in <dpdk_folder>/config/common_linuxapp [this step is not needed from R16.07] CONFIG_RTE_PCI_CONFIG=y and CONFIG_RTE_PCI_EXTENEDED_TAG=on</dpdk_folder>	This helps increase the efficiency of PCIe by increasing the number of outstanding transactions from 36 to 256.
command to run Please only run I3	g l3fwd application & for testing 2 x 10 G <u>3fwd, to start with,</u> <u>e performance for</u> <u>ose.</u>		./l3fwd -c 0x3fc00 -n 4 -w 05:00.0 -w 05:00.1p 0x3config '(0,0,10),(1,0,11)' *Note config (port, queue, core ID) is the format above
11 In I2fwd, #define [This increases bu from 8K] – in the examples/I2fwd/	uffer count to 16K – file	Change in examples/I2fwd/main.c the values of RTE_TEST_RX_DESC_DEFAULT and RTE_TEST_TX_DESC_DEFAULT both to 1024.	L2fwd. After making the changes, Save. Build I2fwd with make.
12 Phase 2: Running	l3fwd application & for testing 4 x 10 G	With 4 core, 4 Threads, 4 Ports (with only 1 Queue/port) – Single port x 40 Gig configuration	 ./I3fwd -c 0x3fc00 -n 4p 0xfconfig '(0,0,10),(1,0,11),(2,0,12),(3,0,13) *Note config (port, queue, core ID) is the format above
		Use 2 Cores	

System Configuration

DPDK

Hardware			
Motherboard		Supermicro* X10DRX	
	Product	Intel ® Xeon® Processor E5-2658 v4	
	Speed(MHz)	2300	
CPU	Number of CPUs(per socket)	14Cores/28 Threads/socket	
CPU	Stepping	M0	
	LLCCache	35840K	
	Max TDP(W)	105W	
	Vendor	Samsung*	
	Туре	DDR4-2400 RDIMM	
Memory	Configured Speed(MT/s)	2400	
Wentory	Part Number	36ASF2G72PZ-2G3A3	
	Size per DIMM	16GB	
	Channel	1 DIMM/Channel, 4 Channel per Socket	
	Vendor	American Megatrends Inc.*	
BIOS			
	Version	Version 2.0 Release date 12/17/2015	
OS	Vendor	Fedora 23	
	Version	4.2.3-300.fc23.x86_64	

may be claimed as the property of others.

Other names and brands

BIOS Tuning Settings

DPDK

Menu (Advanced)	BIOS Setting	Required Settings for Performance	BIOS Default
CPU Configuration ->			
Advanced Power Management Configuration			
	Power Technology	Disable	Custom
	Energy Performance Tuning	Disable	Enable
	Energy Performance BIAS Setting	Performance	Enable
	Energy Efficient Turbo	Disable	Enable
-> CPU P State Control	EIST (P-States)	Disable	Enable
-> CPU P State Control	Turbo Mode	Disable	Enable
-> CPU P State Control	P-State Coordination	HW_ALL	HW_ALL
-> CPU C State Control	Package C State Limit	[C0/C1 State]	[C6 (Retention)]
-> CPU C State Control	CPU C3 Report	Disable	Enable
-> CPU C State Control	CPU C6 Report	Disable	Enable
-> CPU C State Control	Enhanced Halt State (C1E)	Disable	Enable
Chipset Configuration			
-> North Bridge -> IIO Configuration	EV DFX Features	Enable	Disable
	Intel VT for Directed I/O (VT-d)	Disable	Enable
->North Bridge -> IOAT Configuration	Enable IOAT	Enable	Enable
	No Snoop	Disable	Disable
	Relaxed Ordering	Disable	Disable
-> North Bridge -> QPI Configuration			
	Link L0 P	Disable	Enable
	Link L1	Disable	Enable
	COD Enable	Disable	Auto
	Early Snoop	Disable	Auto
	Isoc Mode	Disable	Disable
-> North Bridge ->Memory Configuration	Enforce POR	Disable	Auto
	Memory Frequency	2400	Auto
	DRAM RAPL Baseline	Disable	Auto
	A7 Mode	Enable	Enable
-> South Bridge	EHCI Hand-off	Disable	Auto
	USB3.0 Support	Disable	Enable
PCIe/PCI/PnP Configuration	ASPM	Disable	Enable
	Maximum Payload	AUTO	AUTO
	Maximum Read Payload	AUTO	AUTO
	Onboard LAN 1 OPROM	Disable	PXE

• Other names and brands may be claimed

• as the property of others.

Latency & Throughput – How To Improve?

- Latency Hiding Prefetch
- Throughput Bulk

Admin Queues – DOs and Don'ts

- XL710 Admin Queue Versus 82599 Mail Box
- Run time changing MTU? Think Again. Why?
- Run time Resetting VFs from PF?

FUNCTIONAL PERFORMANCE MEASUREMENT FOR COMMUNICATIONS: LAYER 3 FORWARDING USING 10GBE AND 40GBE

Test Setup for 10G Cards

* Other names and brands may be claimed as the property of others.

Test Setup for 40G Cards

DPDK

* Other names and brands may be claimed as the property of others.

Test Setup -Cont.

DPDK

DUT:

- Intel® Xeon® E5-2658 v4 processor,35MB L3 cache
- Super Micro* Platform (X10DRX)
- DDR4 2400 MHz, 4 x 1Rx4 registered ECC 16GB (total 64GB), 4 memory channels per socket Configuration, 1 DIMM per channel
- 1 x Intel X710-DA4-FH PCI-E Gen3X8 Quad Port Ethernet Controller (NVM: 5p04)
- 2 x Intel XL710-DA2 PCI-E Gen3x8 Dual Port 40GbE Ethernet Controller (NVM: 5p04)

IXIA* Traffic Parameters:

- Acceptable Frame Loss: 0.00001%
- Resolution: 0.1
- Traffic Duration: 20 Seconds

Software:

- BIOS version: Version: 2.0 & Date: 12/17/2015
- Operating system: Fedora 23
- Kernel version: 4.2.3-300.fc23.x86 64
- IxNetwork*: 7.40 EA
- DPDK version: 16.04
- DPDK L3fwd example application on Linux user space (LPM for route lookup)
 - $hw_ip_checksum = 0$, /**< IP checksum offload enabled */
 - #define RTE_TEST_RX_DESC_DEFAULT 1024

* Other names and brands may be claimed as the property of • #define RTE TEST TX DESC DEFAULT 1024 others.

Flow Traffic Configuration

DPDK

4 x10G Ports

2 port configuration with 256 bi-directional flows per

- Port 0 -> Port 1
 Port 2 -> Port 3
 - Port 1 -> Port 0 Port 3 -> Port 2

* Other names and brands may be claimed as the property of others.

Flow Traffic Configuration

2 x40G Ports

DPDK

2 port configuration with 256 bi-directional flows per

port

- Port 0 -> Port 1
- Port 1 -> Port 0

Polling Affinity for Ethernet Queues- 4x10G ports

DPDK

2 ports – (1 Core/1 Thread /1Queue)

CPU1 (Core 1 SMT 0) polls port 0 CPU1 (Core 1 SMT 0) polls port 1 CPU1 (Core 1 SMT 0) polls port 2 CPU1 (Core 1 SMT 0) polls port 3

• 2 ports - (1 Core / 2 Threads/1 Queue)

CPU1 (Core 1 SMT 0) polls port 0 CPU2 (Core 15 SMT 1) polls port 1 CPU1 (Core 1 SMT 0) polls port 2 CPU2 (Core 15 SMT 1) polls port 3

2 ports - (2 Core / 2 Threads/1 Queue)

- CPU1 (Core 1 SMT 0) polls port 0 CPU1 (Core 2 SMT 0) polls port 1
- CPU1 (Core 1 SMT 0) polls port 2
- CPU1 (Core 2 SMT 0) polls port 3

Each polling core has 100% CPU Utilization. Remaining cores are IDLE

Polling Affinity for Ethernet Queues-2x40G ports

DPDK

- 2 ports (1 Core / 1 Thread/2 Queues)
 CPU1 (Core 1 SMT 0) polls port 0 queue 0
 CPU1 (Core 1 SMT 0) polls port 0 queue 1
 CPU1 (Core 1 SMT 0) polls port 1 queue 0
 CPU1 (Core 1 SMT 0 polls port 1 queue 1
- 2 ports (1 Core / 2 Thread/2 Queues) CPU1 (Core 1 SMT 0) polls port 0 queue 0 CPU2 (Core 15 SMT 1) polls port 0 queue 1 CPU1 (Core 1 SMT 0) polls port 1 queue 0 CPU2 (Core 15 SMT 1) polls port 1 queue 1
- 2 ports (2 Core / 2 Thread/2 Queues) CPU1 (Core 1 SMT 0) polls port 0 queue 0 CPU1 (Core 2 SMT 0) polls port 0 queue 1 CPU1 (Core 1 SMT 0) polls port 1 queue 0 CPU1 (Core 2 SMT 0) polls port 1 queue 1

Each polling core has 100% CPU Utilization. Remaining cores are IDLE

* Other names and brands may be claimed as the property of others.

- 2 ports –(2 Core / 4 Thread/2 Queues) CPU1 (Core 1 SMT 0) polls port 0 queue 0 CPU2 (Core 15 SMT 1) polls port 0 queue 1 CPU1 (Core 2 SMT 0) polls port 1 queue 0 CPU2 (Core 16 SMT 1) polls port 1 queue 1
- 2 ports (4 Core / 4 Thread/2 Queues)
 CPU1 (Core 1 SMT 0) polls port 0 queue 0
 CPU1 (Core 2 SMT 0) polls port 0 queue 1
 CPU1(Core 3 SMT 0) polls port 1 queue 0
 CPU1(Core 4 SMT 0) polls port 1 queue 1

Reference & Acknowledgements

- Cloud Networking Understanding Cloud-Based Data Center Networks Gary Lee.
- <u>http://cat.intel.com</u> Get NDA performance foils here.
- DPDK Cook Book on Vtune M Jay
 - <u>https://software.intel.com/en-us/articles/profile-dpdk-code-with-intel-vtune-amplifier</u>
- DST 2016: v-ISG-Fortville: Explaining Fortville Features Enabled with DPDK Rel 16.04 Hash and Flow Director Filters, Native MPLS (Virtual) – Andrey Chilikin, Eoin Walsh.
- CISCO White Paper January 2016 VXLAN Best Practices
- Intel® XL710/X710 Data Sheet
- George for Performance setup
- Rashmin foils for Virtualization
- <u>http://blog.jgriffiths.org/?p=929</u> Deep Dive: How does NSX Distributed Router Work

^{*} Other names and brands may be claimed as the property of others.

Questions?

M Jay Muthurajan.Jayakumar@intel.com Helin Zhang Helin.Zhang@intel.com

Comparing XL710/X710 to Prior NIC 82599

Fortville family (XL710/X710)

- Low power single chip design for PCI Express* 3.0
- Support for standard and custom network headers

DPDK

- Intelligent load balance for high performance traffic flows
- Network virtualization Overlay stateless offloads for VXLAN, NVGRE, Geneve, VXLAN GPE, NSH, MPLS
- Flexible pipeline processing add new features after production by upgrading firmware

GENEVE & NSH added after the chip is released - Flexibility !