Who we are?

• Thomas F. Herbert
 – Red Hat
 – therbert@redhat.com

• Kevin Traynor
 – Intel
 – kevin.traynor@intel.com

• Mark Gray
 – Intel
 – mark.d.gray@intel.com
What is a Virtual Switch?
OVS Architectural Evolution

- User space
- Openflow Processing
- Kernel space
- Microflow cache
- Netlink
- NIC
OVS Architectural Evolution

User space

Openflow Processing

Kernel space

Netlink

Megaflow Cache

Microflow Cache

NIC

NIC

NIC
OVS Architectural Evolution

User space

Openflow Processing

Megaflow Cache

Microflow Cache

Kernel space
OVS Architecture

- ofproto
 - netdev
 - netdev-dpdk
 - libdpdk
 - ofproto-dpif
 - dpif
 - dpif-netdev

- vfio
- uio

- Niantic
- Fortville
OVS Guest Interfaces

- ovs-vswitchd
- Userspace Forwarding
- netdev-dpdk
- PMD
- vhost
- rte_ring

QEMU
- ivshmem
- virtio-pmd
- virtio-net
- rte_ring
- vhost
- vhost-user
- vhost-cuse
DPDK – Open vSwitch

- DPDK - Popular Software Accelerated Data Plane
 - Fast Packet Forwarding for the Cloud
 - Virtualized Network Functions
 - Use of Commodity Hardware
 - For Basic OpenFlow Switch Functions
 - Behaves Identical to Linux Kernel
 - Advantages and Disadvantages WRT Linux Kernel
 - Linux Data Plane Has
 - 20 years of development
 - Rich Debugging Options
 - Packet Dumping
 - Access to Wide Variety of Network IF’s and VF’s
 - Full set of device statistics
 - More Tunnel Endpoints
 - DPDK Data Plane
 - Much Faster Packet Forwarding
 - Up to 12X for small packets
 - Packets Dumping
 - Access to Wide Variety of Network Interfaces and Virtual Functions
 - Full Set of Device Statistics
 - More Tunnel Endpoints
 - Much Faster Packet Forwarding
 - Up to 12X for small packets
DPDK/OVS User Perspective

• How About the “User” of OVS/DPDK
 • Controllers using OF and OVSDB protocols
 • People Using OVS CLI Tools
 • Network Engineers building complex topologies
 • Cloud Deployments
 • Programmers - Application Developers of
 • Other Packet consumers, DPI, Classifiers
 • Infrastructure – Routers, Firewalls, Services
 • Other Packet consumers, DPI, Classifiers
• One person’s experience
• What do user’s want
 • Expectations of DPDK/OVS vs Linux Kernel/OVS
DPDK/OVS Usability Story

- In the Beginning: My user Story starts in 2013
 - Inspired by Intel presentation of DPDK at ONS 2013
- On Team Developing SDN Network Threat Analyzer controlled
 - Integrated Open vSwitch
 - First with Linux Kernel Data Path
 - Traffic shaping, threat blocking and mitigation
- Requirement: 10Gb without Adding $10K to $20K on custom HW Switch Fabric.
 - DPDK is the Answer?
 - How to prove the OVS/DPDK Claim?

- At first Started with DPDK 1.7.1
- Scary: poor integration --Not integrated with OVS
 - Compilation issues, conflicting APIs. ABIs, OVS Versions
 - Three Confusing Forks:
 1. DPDK.org
 2. DPI Fork with custom API
 3. 01.org
- Then came DPDK 1.8
 - Integrated: Master Branch OVS
 - I Ran DPDK on guest with VirtIO/VMXnet3 saw 2.5X perf gain
 - Developed App using DPDK-ring to feed DPI
- Now we are up to DPDK 2.1 with OVS.
 - Much much improved!
The Netdev Interface to OVS

- Transparency of Data Plane
- Netdev – API Between Data Plane and OVS
 - Generic network device API independent from data plane implementation.
 - Similar to network driver interface in BSD
 - Netdev Abstracts forwarding of packets in data plane
- Conceptually like any Network device driver
 - With Start, Stop, Private Data Area, Queue Management
- Struct netdev Holds the interface Specific Function Pointers
 - Includes the generic part followed by private part for use by driver.
 - Constructur for netdev provider
- Dpdk Creates dpdk personality of struct netdev
 - Multiple rx queues Managed by OVS
Improving DPDK/OVS

• Is DPDK really still Experimental?
 • Is it time for this patch?

--- a/INSTALL.DPDK.md
+++ a/INSTALL.DPDK.md
 @@ -5,8 +5,8 @@
 Open vSwitch can use Intel® DPDK lib to operate entirely in Userspace. This file explains how to install and use Open vSwitch in such a mode.

 -The DPDK support of Open vSwitch is considered experimental.
 -It has not been thoroughly tested.

This version of Open vSwitch should be built manually with `configure` and `make`.
• Issues with DPDK:
 • How to Improve?
 • This thread, http://openvswitch.org/pipermail/dev/2015-August/058814.html
 • Some Suggestions from Thread
 • Device management:
 • Udev/systemd – (Flavio Leitner)
 • Device creation, binding, destruction – handled by Host OS
Improving DPDK/OVS Contd.

- How to Improve?
 - Debugging?
 - TcpDump like capability
 - Use “Mirroring” of packets to pmd/libpcap or libpcap-ng
 - Testing
 - Add CI for Data Plane Testing
 - Vsperf Project – To Test Against Goals
 - Support Only One type of vhost device
 - Drop Vhost - Cuse
 - Vhost-user only
 - Better Documentation
 - Recent Patch to INSTALL.DPDK.md
 - Training
 - From lstopo to Optimized Data Plane
Tuning - Multiple Threads

Core 0

VM

OS

VIRTUAL 0

VIRTUAL 1

PHY 0

PHY 1

OVS
Tuning - Multiple Threads

Core 9

VM

Core 0

OS

Core 1

VIRTUAL 0

Core 11

PHY 0

Core 2

VIRTUAL 1

Core 12

PHY 1

OVS
Tuning - Multiple Queues

0
OVS

Core 0
OS

Core 9

VM 0

Core 8

Core 1

Core 3

VIRTUAL 0

Core 2

Core 4

VIRTUAL 1

Core 11

Core 13

PHY 0

Core 12

Core 14

PHY 1
Performance Optimizations
Performance Optimizations

- **Exact Match Cache**
 - Logically, Single Table per datapath thread
 - Exact Match
 - 8192 entries / per thread

- **Datapath Classifier**
 - Logically, Single Table per datapath thread
 - Wildcard Matches
 - 65536 entries

- **Ofproto Classifier**
 - Logically, Multiple (up to 255) Open Flow tables in pipeline per Open vSwitch bridge
 - Wildcard Matches

Cost of lookup increasing
Performance Optimizations

rx cost

- **Virtual**
- **Physical**

EXECUTE ACTION

Cost of lookup increasing

Exact Match Cache
- Logically, Single Table per datapath thread
- Exact Match
- 8192 entries / per thread

Datapath Classifier
- Logically, Single Table per datapath thread
- Wildcard Matches
- 65536 entries

Ofproto Classifier
- Logically, Multiple (up to 255) Open Flow tables in pipeline per Open vSwitch bridge
- Wildcard Matches
Performance Optimizations

lookup cost

Datapath Classifier
- Logically, Single Table per datapath thread
- Exact Match
- 8192 entries / per thread

Ofproto Classifier
- Logically, Multiline (up to 255) OpenFlow tables in pipeline per Open vSwitch bridge
- Wildcard Matches
- 65536 entries

Cost of lookup increasing

rx cost

VIRTUAL

physical

tx

EXECUTE ACTION

EXECUTE ACTION

EXECUTE ACTION

EXECUTE ACTION
Performance Optimizations

- **rx cost**
 - virtual
 - physical

- **lookup cost**
 - Exact Match Cache
 - Logically, Single Table per datapath thread
 - Exact Match
 - 8192 entries / per thread
 - Datapath Classifier
 - Logically, Single datapath thread
 - Wildcard Matches
 - 65536 entries
 - Ofproto Classifier
 - Logically, Multiple (up to 255) OpenFlow tables in pipeline per Open vSwitch bridge
 - Wildcard Matches

- **action cost**

Cost of lookup increasing
Performance Optimizations

- **rx cost**
- **tx cost**
- **lookup cost**
- **action cost**
Performance Optimizations

- lookup cost
- rx cost
- tx cost
- action cost

<table>
<thead>
<tr>
<th>Exact Match Cache</th>
<th>Datapath Classifier</th>
<th>Oproto Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Logically, Single Table per datapath thread</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Exact Match</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 8192 entries / per thread</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Logically, Single datapath thread</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Wildcard Matches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 65536 entries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Logically, Multiple (up to 255) Open Flow tables in pipeline per Open vSwitch bridge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Wildcard Matches</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost of lookup increasing
Performance Optimizations

- **rx** (virtual to physical)
 - Exact Match Cache: 38x
 - Datapath Classifier: 17x
 - Ofproto Classifier: 1

- **tx** (physical to virtual)
 - EXECUTE ACTION

Cost of lookup increasing
Performance Optimizations

- **Physical**
 - Offload hash to NIC hardware
 - Multiple Rx Queues using RSS
 - DPDK Tx/Rx use of Intel’s Advanced Vector Extensions
 - DPDK Bulk allocation and batching

- **Exact Match Cache**
 - Increased size
 - DPDK hash integration - needs variable key size
 - Native EMC optimization

- **Datapath Classifier**
 - Investigating use of DPDK ACL table
 - Different usage model than OVS datapath classifier

- **Virtual**
 - vhost library – prefetching and bulk operations
 - virtio pmd vectorization
 - Multiqueue vhost
Performance Results
Date: August 2015. Disclaimer: Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. Source: Intel internal testing as of August, 2015. See Linux® Performance Tuning for configuration details. For more information go to http://www.intel.com/performance. Results have been measured by Intel based on software, benchmark or other data of third parties and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance. Intel does not control or audit the design or implementation of third party data referenced in this document. Intel encourages all of its customers to visit the websites of the referenced third parties or other sources to confirm whether the referenced data is accurate and reflects performance of systems available for purchase.
Conclusion
“It just works”
"It just works"
Backup
Tuning - Multiple Queues
OVS Architectural Evolution

Compute Node: User Space
- ovsdb
- ovs-vswitchd
- dpif-netdev (User Space Forwarding)
- openvswitch.ko

Compute Node: Kernel Space
- dpif-linux (Kernel Space Forwarding – Control Only)
- netdev
- netdev_vport
- netdev_linux
- netdev-dpdk
 - DPK
 - librte_vhost
 - librte_ring
 - librte_eth

Overlays
- ofproto
- sockets

OpenFlow
- ovsdb server

VNF
- Virtio
- Qemu

VirMo
- Qemu

Qemu
- Ivshmem
- DPK
- Qemu