Userspace 2015 | Dublin

Hyperscan
Software Pattern Matching
DPI Overview

DPI is a function that classifies Packets with two primary methods

- **Parsing** – Identifies application based on protocol and content
 - RegEx = Higher compute, simple to manage
 - Fixed String = Lower compute, complex to manage

- **Pattern Matching** – Matches signatures in the packet to a database using RegEx or Fixed Strings
 - {Sig:/.*evil.*/}

Innocent
Pattern Matching

- Pattern matchers are at the heart of most security applications.
- As threats become complex, more intensive inspection is needed, but without application slow-down.
- Purpose-build hardware may cope with line-rate performance but time-to-market and maintenance cost is high.
- Software pattern matching provides the performance and scalability needed for the rapidly changing landscape.
Hyperscan

- Software Pattern Matching engine
 - Regex and Fixed-string matching
 - High performance
 - Low latency, compile time, memory
- Scales IA (Atom to Xeon)
 - Utilizes SIMD (SSE.x) for highest performance
- Portable, Easy to Integrate
 - Simple API; 32/64-bit systems
 - OS independent
- Recent Release
 - Hyperscan 3.4
Hyperscan Structure Summary

- Regular expressions are parsed into state machines.
 - Non-deterministic finite automata (NFA)
 - Deterministic finite automata (DFA)
- Engines are compiled into databases in terms of bytecode.
- During runtime, bytecode are used to search for patterns in data streams.
 - Block/streaming mode

```
xxxxabcxxxxxxxxdefxx
xxxab  cxxxxxxxx xdefxx
x  x  x  a  b  c  x  x  x  x  x  x  x  x  d  e  f  x  x
```

Time (earlier writes to later writes)
Example Automata Engines

- Sample regular expression
 `/baz[^z]*bar/`

 Search string
 "babazcbar"

- NFA engine

- DFA engine

- Optimized DFA engine
Performance Tradeoffs

Overhead Efficiency

Non-deterministic Finite Automaton
= Small overhead but slow

Deterministic Finite Automaton
= Fast, but large overhead

DFA

Intel Hyperscan
Hyperscan Performance

- Using Tier-1 OEM commercial IPS signature database
- HTTP test traffic; real world
- Rangeley (8-core, 2.4Ghz): ~3Gbps (1 core) scaling to 36Gbps (8-core)
- Haswell-EP: 293Gbps
 - Intel® Xeon® CPU E5-2658 v3 @ 2.20GHz
 - With hyperthreading

Note: Numbers are subject to change using different benchmarking
• Cache rich architecture
 • High bandwidth to Level 1 and Level 2 cache
 • Large L2 and L3 allows matching tables for literal matching to stay cache resident
 • Large L2 is unshared which means, unlike much of IA competition, scaling keeps going – unshared L2 bandwidth is per-core not per-chip
• Hyperthreading enables additional performance (15-20% is typical)
• Instruction sets
 • Process large numbers of characters using SIMD: SSE2, SSSE3
 • SIMD operations are resource friendly and fast on IA; enables large matching engines e.g. NFAs with big state counts
 • AVX2.0 enables processing of large amounts of input data in one step
 • BMI1/BMI2 also a 1:1 match for many pattern matching primitives: PEXT/PDEP replace a 10-30 instruction loop with 1 instruction