
x

DPDK Locks Optimizations and
New Locks APIs

GAVIN HU
PHIL YANG

ARM

Agenda

• Generic locks implementations

• Weaker memory model

• C11 atomics (__atomic vs __sync)

• Spinlock /RW lock

• Ticket lock

• MCS queued spinlock

• AArch64 specific lock implementations

• WFE for Locks

• Spinlock

• RW Lock / Ticket Lock / MCS queued spinlock

• Key Takeaways

3

Weaker Memory Model

• Observed ordering of memory accesses may be influenced by:
• HW / Compiler

• AArch64 has a weaker hardware memory model
• Allows the processor to re-order, repeat, and merge accesses.
• One CPU core can see values change in shared memory in a different order than another

core wrote them.

• This memory reordering is transparent to programmers most of time

• Still there are cases where the observed memory ordering needs to be
formalized, especially for multiple threads.

• Memory fences help govern observed memory ordering.

• Memory fences degrade performance
• Weaker memory models typically suffer the most.
• Compilers support the relaxed C11 memory model in atomic built-ins.

4

• Legacy __sync built-ins considered a full
barrier

C11 Atomics (__atomic vs __sync)

• __atomic built-ins are memory model
aware atomic operations

• __atomic allows one to specify less
restrictive barriers

 Full memory barrier one-way barrier.

MemBar Acquire

MemBar ReleaseLoad x1

Load x2
Store x5

X

Store x1
Load x5

Store x2

X

Load x3
Store x4

Load x3
Store x4

• The DMB ISH instruction splits memory
accesses in program order into two groups

• Observers will observe group 1
memory accesses before group 2.

2nd group 2

1st group 1

(gdb) disassemble /s rte_spinlock_lock
Dump of assembler code for function rte_spinlock_lock:
...
64 while (__sync_lock_test_and_set(&sl->locked, 1))

0x0000000000b801f8 <+36>: ldr x1, [sp, #24]
0x0000000000b801fc <+40>: mov w2, #0x1 // #1
0x0000000000b80200 <+44>: ldxr w0, [x1] <-- Exclusive load
0x0000000000b80204 <+48>: stxr w3, w2, [x1] <-- Exclusive store
0x0000000000b80208 <+52>: cbnz w3, 0xb80200 <rte_spinlock_lock+44>
0x0000000000b8020c <+56>: dmb ish <-- Full barrier
0x0000000000b80210 <+60>: cmp w0, #0x0
0x0000000000b80214 <+64>: b.ne 0xb801e8 <rte_spinlock_lock+20> // b.any

...

one-way barrier

5

Generic Spinlock

• __atomic instead of __sync built-ins
• Full memory barrier one-way barrier

• Calling __atomic built-ins in spinlock

• with RTE_FORCE_INTRINSICS enabled

• Apply patches:
• Spinlock test

http://patchwork.dpdk.org/patch/49822/
• Spinlock atomic one-way barrier

http://patchwork.dpdk.org/patch/49824/

• arm SoC#1 @ 3GHz vs arm SoC#2 @ 2GHz

• 12-cores vs 27-cores
• Performance degrades as more cores are involved in

lock contention.

• __atomic API implementation scales up much better
with more cores contention

0

20000

40000

60000

80000

12-cores SoC#1 12-cores SoC#2 27-cores SoC#1

Spinlock Micro-benchmark

__sync __atomic

C
o

u
n

t/tim
e

Lo
c

k u
n

lo
c

k C
o

u
n

t/C
PU

$ sudo ./test/test/test -c 0xfff00 -n 4 --socket-mem=1024,1024 --file-prefix=~ -- -I
…
RTE>>spinlock_autotest

6

Generic RW Lock

• __atomic instead of __sync built-ins

• Full memory barrier one-way barrier

• Calling __atomic built-ins in RW lock

• with RTE_FORCE_INTRINSICS enabled

• Apply patches:
• RW lock atomic one-way barrier

http://patchwork.dpdk.org/patch/49839/
• RW lock test
• http://patchwork.dpdk.org/patch/49840/

• arm SoC#1 @ 3GHz vs arm SoC#2 @ 2GHz
0

2000

4000

6000

8000

10000

12000

14000

12-cores
SoC#1

12-cores
SoC#2

27-cores
SoC#1

RW lock Micro-benchmark

__sync __atomic

Lo
c

k u
n

lo
c

k C
o

u
n

t/C
PU

$ sudo ./test/test/test -c 0xfff00 -n 4 --socket-mem=1024,1024 --file-prefix=~ -- -I
…
RTE>>spinlock_autotest

7

Benchmarking on x86

• The default spinlock is a x86 architecture specified
inline assembly lock.

• Apply patch:
• Spinlock test

http://patchwork.dpdk.org/patch/49822

• Calling __sync built-ins on x86

• with RTE_FORCE_INTRINSICS enabled

• Apply patch:
• Spinlock test

http://patchwork.dpdk.org/patch/49822

• Calling __atomic built-ins on x86
• with RTE_FORCE_INTRINSICS enabled

• Apply patches:
• Spinlock test

http://patchwork.dpdk.org/patch/49822/
• Spinlock atomic one-way barrier

http://patchwork.dpdk.org/patch/49824/

0

50000

100000

150000

200000

250000

300000

4-cores lock contention

Spinlocks Micro-benchmark

__inline_asm __sync __atomic

C
o

u
n

t/tim
e

Lo
c

k u
n

lo
c

k C
o

u
n

t/C
PU

$ sudo ./test/test/test -c 0xf0 -n 4 --socket-mem=1024,1024 --file-prefix=~ -- -I
…
RTE>>spinlock_autotest

• The relaxed memory ordering atomics will not
degrade spinlock’s performance on strong
memory model hardware.

8

Shortcomings of Current Spinlock implementation

Issues of Spinlock
Unfairness

• When PE releases the lock, will invalidate the other PE’s private
caches.

• The PE who owns the local cache is more likely to get the lock
again, starving other PEs.

Unpredictability

• Starvation causes unpredictable waiting time

• Starvation may cause throughput loss or more latency.

Cache bouncing

• Once the lock acquired and released. The PE will invalidate the
other PE’s private caches.

• If the lock struct shared the cache line with other shared memory,
the shared data modification will also cause cache bouncing

Spinlock UT shows the unfairness

RTE>>spinlock_autotest
…
Test with lock on 12 cores...
Core [20] count = 14541
Core [21] count = 15573
Core [22] count = 180639
Core [23] count = 180372
Core [24] count = 1
Core [25] count = 1
Core [26] count = 17
Core [27] count = 28
Core [28] count = 6
Core [29] count = 7
Core [30] count = 1
Core [31] count = 1
Total count = 391187

starved

Ref: https://lwn.net/Articles/267968/

9

Ticket Lock

How to address

• Unfairness

• Unpredictability

The problems to address

• Ticket based

• Each request increases the next ticket by 1.

• Each release increases the current ticket by 1.

• Whose current matches next takes the lock.

• FIFO service

typedef struct {
uint16_t current;
uint16_t next;

} rte_ticketlock_t;

Ticket lock

current next

http://patchwork.dpdk.org/cover/50359/

10

MCS Queued Lock

Advantages

• Guarantees FIFO lock services

• Remove cache line bouncing

• Spins on the core own local variables only

• Requires a small constant amount of space per lock

• Requiring only O(1) cache coherency transactions
per lock acquisition

The MCS lock (proposed by Mellor-Crummey and Scott) is a simple spin-lock with each CPU trying to acquire
the lock spinning on its own variable.

typedef struct rte_mcs_spinlock {
struct rte_mcs_spinlock *next;
int locked; /* 1 if locked, 0 otherwise */

} rte_mcs_spinlock_t;

http://web.mit.edu/6.173/www/currentsemester/readings/R06-scalable-synchronization-1991.pdf
https://lwn.net/Articles/590243/

11

MCS Queued Lock cont.

• Pointer in the "main" lock is the tail of the queue of
waiting CPUs.

MCS lock

MCS lock

(a)

(c)

MCS lock

(d)

MCS lock
(e)

MCS lock
(b)

1(R)

1(R) 2(B) 3(B)

2(R) 3(B) 3(R)

CPU 1

CPU 1 CPU 2 CPU 3

CPU 2 CPU 3 CPU 3

Empty lock CAS cpu1 mcs_spinlock with lock, acquire it.

• CAS cpu2 mcs_spinlock with lock, prev != NULL, lock taken.
• Repeat previous operation: CAS cpu2 with cpu1’s mcs_spinlock. Then cpu3.

CPU1 done with the lock

CPU2 done with the lock

void rte_mcs_spinlock_lock(rte_mcs_spinlock_t **msl,
rte_mcs_spinlock_t *me);

void rte_mcs_spinlock_unlock(rte_mcs_spinlock_t **msl,
rte_mcs_spinlock_t *me);

typedef struct rte_mcs_spinlock {
struct rte_mcs_spinlock *next;
int locked; /* 1 if locked, 0 otherwise */

} rte_mcs_spinlock_t;

12

Aarch64 specific Spinlock implementation

• WFE

• Tight loop  suspend execution

• Less stress to memory subsystem

• Less power

• Benchmarking
• WFE spinlock is on par with __sync spinlock

when testing on 12 lcores.

• With increasing contentions(12 96 lcores
contending for the lock), more contention
cause less total number of locking and
unlocking.

• WFE scales much better than __sync.

0

50000

100000

150000

200000

250000

300000

350000

12-lcore SoC#2
(1 Numa node)

96-locre SoC#2
(2 Numa nodes)

3-lcore SoC#3 (1
Numa Node)

Spinlock Micro-benchmark

__sync spinlock WFE spinlock

Lo
c

k u
n

lo
c

k C
o

u
n

t

13

How does WFE work?

• WFE (wait for event)
• Suspend execution when the lock was held by other

PEs, instead of continuous polling

• Get wake up events if the other PE releases the lock

• Use cases : busy-polling waiting
• Spinlock

• RW lock

• Ticket lock

• MCS spinlock

Spinlock with WFE

PE #0
(Requesting)

Interconnect
Global Monitor

Memory

Local
monitor

PE #1
(Locked)

Local
monitor

1: Load
acquire

2: wfe

3: store
release

4: wake up

5: Locked

14

Work in progress

• Generic implementations
• Spinlock (under community review arming at 19.05)

• RW lock (under community review arming at 19.05)

• Ticket lock (under community review arming at 19.05)

• MCS queued spinlock (under internal review arming at 19.08)

• Aarch64 specific implementations
• WFE Spinlock (under internal review, aiming at 19.08)

• Planning to use it in RW lock, ticket lock and MCS lock

15

Key Takeaways

• More performant, scalable RW lock, spinlock

• New ticket lock, MCS queued spinlock

• Integration of Arm specific features in locks

Thanks！
Gavin Hu

gavin.hu@arm.com

Phil Yang

phil.yang@arm.com

