Thread-safe High
Performance Pseudo-random
Number Generation

Agenda @ DPDK

Introduction
Use cases

- API
Pre-19.08 Implementation
Goals for 19.08
Implementation
Initial Seeding
Bounded PRNG
Questions

Pseudo-random Number Generator (PRNG) @ DPDK

- An algorithm for generating a sequence of numbers

Each number approximates a truly random number
Deterministic

- Seqguence determined by initial state — the seed

Use Cases @ DPDK

* Network protocol implementations
- Functional and performance testing
* Important aspects
- Good statistical properties (e.g. uniformity and passing various tests)
- Thread safety
- Efficiency
- Security

PRNG AP) DPDK

* <rte_random.h>
° uinté4_t rte_rand(void);
- Generates 64-bit pseudo-random number
- void rte_srand(uint64 t seed);
* Provides opportunity for a user-specified seed

Pre-19.08: Implementation @ DPDK

- rte_rand()/rte_srand() wrappers around Irand48()/srand48()

- *rand48() is a part of the Single UNIX Specification and glibc
* Uniform distribution
- Range [0 — (2"31-1)]
- Not thread-safe (shared state) [DPDK bug 114]
- Implemented with a 48-bit linear congruential generator (LCG)
* rte_rand() uses two lrand48() calls — high and low bits
* Only generates 62-bit of randomness
- Bit 31 and 63 are always zero [DPDK bug 276]

19.08: Goals @ DPDK

Provide thread safety to allow use from Icore threads

Keep things simple and API/ABI backward-compatible
Higher-quality generated values (including truly 64-bit values)
Improved performance

Improved APl documentation

Improved initial seeding

DPDK performance test suite extension

Unbiased, bounded PRNG

_Y_l
|eob jenjuj
J

© N o o k~ w D PRF
i
jeob |eui

19.08: Out of Scope @ DPDK

No rte_rand32()
- Faster (~35% less overhead), but 64-bit still very fast

No support for multiple distributions - stay uniform-only
No support for multiple PRNG algorithms
...for advanced functionality, use external library

19.08: General Design @ DPDK

- rte_rand() / rte_srand() APl remains unchanged
* Introduce per-lcore PRNG
- No rte_rand_r() or any user-managed state
- Makes rte_rand() MT safe (for Icore worker threads)
- rte_srand() still MT unsafe
- For use during application initialization
- Seed used by each Icore is <global-seed>+<Icore_id>

* <rte_random.h> functions are moved from “static inline” in header file to
regular, non-static functions

- ABI addition, but backward compatible

19.08: Tausworthe Generator @) DPDK

DATA PLANE DEVELOPMENT KIT

- DPDK-native implementation struct _rt%zart]d_lstate {
. e . uin z1;
* Maximally equidistributed combined Tausworthe generator uint64_t z2;
- Also known as Linear Feedback Shift Register (LFSR) uinté4 t z3;
. i i uint64 t z4;
Well k_nowr_l anq well analyzed | Uint64 t 25;
Described in this , with this

} _rte cache_aligned;
- Allows performant software implementation

Five sequences per instance/lcore (40 bytes state)
Natively producing a 64-bit number

Fairly common, including Linux kernel usage, for similar
purposes

- DPDK code not based on this implementation
« Tausworthe sequences seeded using a LCG

https://www.ams.org/journals/mcom/1996-65-213/S0025-5718-96-00696-5/S0025-5718-96-00696-5.pdf
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiCnofh9IniAhXUAhAIHeWtB78QFjAAegQIBBAB&url=https://www.ams.org/mcom/1999-68-225/S0025-5718-99-01039-X/S0025-5718-99-01039-X.pdf&usg=AOvVaw3jK5ZmWrA0dfUuabAYb2Jw

19.08: Initial Seeding @ DPDK

* Pre-19.08 relies purely on monotonic CPU wall-time clock (TSC)

+ 19.08 improves initial seeding

- Primary: getentropy() syscall to retrieve “truly” random value
* Requires Linux libc 2.25+ and kernel 3.17+ or FreeBSD 12
- 1st Fallback: HW seeding by rdseed x86 instruction

- x86 64 Broadwell or later
- 2" Fallback: TSC register (or equivalent)

- All systems/hardware

rte_rand() Performance

9 DATA PLANE DEVELOPMENT KIT

Latency [clock cycles/call]

50
45
40
35
30
25
20
15
10

47
37
34
I I |

M Irand48()

MW Irand48 r()

W tausworthe
BMC++4+11 mtl9937

System: Skylake @ 2,9 GHz
12

19.08: Bounded PRNG) DPDK

* rte_rand() % UPPER_BOUND ->range [0 - UPPER_BOUND-1]
- Constant power-of-2 UPPER_BOUND (i.e. 2*N): Very fast and uniform
- Constant non-power-of-2: Fast, but biased (reduced uniformity)
- Variable UPPER_BOUND: Slower, often biased

- Bias only significant for large UPPER_BOUNDs

- rte_rand_max() produces unbiased pseudo-random numbers with an upper
bound

Bounded PRNG @ DPDK

DATA PLANE DEVELOPMENT KIT

80
70
60
50
40
30
20
10

HmIrand48()
m tausworthe

Latency [clock cyles/op]

14

DPDK

Mattias Ronnblom

QueStlonSf) <mattias.ronnblom@ericsson.com>

	Slide 1
	Agenda
	Pseudo-random Number Generator (PRNG)
	Use Cases
	PRNG API
	Pre-19.08: Implementation
	19.08: Goals
	19.08: Out of Scope
	19.08: General Design
	19.08: Tausworthe Generator
	19.08: Initial Seeding
	rte_rand() Performance
	19.08: Bounded PRNG
	Bounded PRNG
	Questions?

