
x

HARRY VAN HAAREN

Optimizing Performance

of Dataplane Software
HARRY VAN HAAREN

Optimizing Performance

of Dataplane Software

Lightning Talk #1

DATA

INSIGHT

SOLUTION

• Record Data

• Understanding and Insight *

• Prototype Performant Code

* May Require Experience

RECORD DATA

Tool:

Linux Perf

$ perf top –C1

Loop : Miniflow Unit 0

Iterations : ?

Loop : Miniflow Unit 1

Iterations : ?

“

”
DATA – INSIGHT – SOLUTION

1) Build a Mental Model of High Performance code e.g. DPDK :)

2) Reason about Code Performance Branches, Cache, SIMD …

3) Adjust Mental Model with Measured Data Continuously Updating …

4) Prototype and Measure Benchmarks + Real World …

INSIGHT
Investigate Code

Loops have Fixed

Trip Counts

Use new Insight to

Optimize!

Loop : Miniflow Unit 0

Iterations : 3 X

Loop : Miniflow Unit 1
Iterations : 1 X

SOLUTION

Constants

Constant

Propagation

Inline Functions

SOLUTION

Constants

Constant

Propagation

Inline Functions

SOLUTION

Constants

Constant

Propagation

Inline Functions

VERIFY OPTIMIZATION

Flat code - No Loops!
- Start at the start

- Execute it all

- 1x per packet

x

Thanks / Questions

harry.van.haaren@intel.com

Thanks / Questions

harry.van.haaren@intel.com

11

Using Perf and Hardware Counters

• Optimized build with Debug Symbols

• Linux Perf

• cycles, cycle_activity.* , resource_stalls.* ,
 Older kernel? Use https://github.com/andikleen/pmu-tools

• Be curious
 Test counters, do they highlight known bad code?
 If so, that’s a good counter to keep using in future

• Perf Usage

• Stat first – overview of counts, build mental model, normalize to per packet cost

• Report stats per physical core or per thread

• use “minus capital i” flag to report per second : -I1000,

• Top/Record – sample stack to see into SW

https://github.com/andikleen/pmu-tools

x

KEITH WILES

Data Plane

Performance Monitor

Lightning Talk #2

Data Plane Performance
Monitor

Performance Monitor Environment

2019/09/19

What is the Performance Monitor Tool

• Performance monitor tool is a standalone GoLang application

• Gathers metrics from DPDK applications and the system

• Displaying the data in a easy to read/understandable format
• At this pointer in development the raw data is gathered and displayed using

only an xTerm (VT100 cursor commands and ANSI color format)

• The tool gathers PCM, PMU, PBF, QPI, PCI and DPDK information
allowing the user to see the data as simple set of charts or tables

• The goal of the tool is to analysis the data and give suggestions on
how to improve performance or remove bottlenecks in the
application and/or system

Performance Monitor Environment tool (PME)

Linux

VM

DPDK App

Container

DPDK AppDPDK App

DPDK App

Performance monitoring with PME

Performance
Monitoring

Linux Perf

Linux resctl

PMU/PCM/…

Platform (CPU/Uncore/PCI RC)

RMD

Power Base Freq

OpenStack

DPDK App

Collectd

Grab
Data

DFS/…Insert PMEplugin
to DPDK apps

QPI/PCIe

Gather data

• Use Prometheus to expose the metrics via the client web page

• Gather PMU register counters for each DPDK instance
• Displayed in the PME tool along with analyzed information

• Expose the PMU information via Prometheus for long term analysis

• Analyze the data and suggest solutions for known problems
• Use AI to help determine hot spots or bottlenecks or …

Data Plane Performance Monitor Toolkit

• The tool will be open source code for developers and non-developers to utilize
• BSD-3-Clause License

• The tool is not a DPDK application, but a tool and libraries for developers
• The toolkit contains the DFS library and other features TBD
• The tool is standalone and written in Go
• PCM/QPI/PCI data is gathered using a modified PCM-tool daemon, which the tool

collects the information from a shared memory region

Panels in the performance monitor tool

The following slides show the current panels displayed
by the tool and can/will change over time

Look at the screen as examples as we continue to define
the metrics and how we display the data

The goal is to analysis the data, then present solutions or
suggestions to improve performance

PME
Start
Screen

Events

Event
Charts

SysInfo

Power
Based
Frequency

DevBind

PCI PCM

QPI
(ignore the data it is
just a place holder)

Questions?
One ask is for help with development and features

Backup slides

How does the tool work?

• To use the tool simply login to a Linux based machine and start the
tool running inside an xterm.

• The tool scans the system and finds the DPDK processes by looking at
the DPDK fuse filesystem (DFS)

• The DFS is a library linked or dynamically loaded to a DPDK application

• The DPDK application does not need to know about the DFS unless the
application wants to install files into the FUSE filesystem

• The DFS creates a base directory @ /dpdk, then creates files and directories

• Each DPDK instance gets its own directory e.g. /dpdk/dpdk-<PID>

• The tool reads the DFS files to gather information about DPDK

How does it work?

• After the tool has located DPDK applications it displays the data in a
set of panels or screens

• The DPDK applications can be detected dynamically by the tool

• The data in the DFS /dpdk filesystem is a collection of files and
directories

• The data in these files can be any format JSON, binary, ASCII, …
• The data is created and presented when the files are open (on demand data)

• The application can add files and directories to the filesystem and
these files or directories can be dynamically add/removed

• Other applications like collectd or Prometheus(client) can be taught
to gather the information from the filesystem

Steps to Observability & Analysis

• Add a few more metrics to DPDK
• Empty polls counters, histogram of packet RX/TX requests, …

• Enable the metrics in DPDK to be on by default (if possible)

• Expose the metrics from DPDK in the FUSE filesystem

• Gather the metrics and display the data via Prometheus if enabled
• Perform analysis on the data to determine Hot Spots

• Provide solutions to remove hot spots or increase performance

Add a few more metrics

• DPDK metrics (possible counters added)
• Counter for data requests that fail

• request mempool, pktmbuf, ring, … when no data available

• Counters for empty RX polling rte_eth_dev_rx_burst() per port/queue
• Helps to determine idleness of the application core

• Counters in PMD to measure performance of efficiency of Rx/TX ring

• Counters in mempool, rte_ring and rte_malloc for allocation/free count

• Counters for mempool, pktmbuf, … on allocation/free memory or pktmbufs

• A few more data points will need to be added over time

Exposing metric data from DPDK

• DFS (DPDK File System)

• DFS is a FUSE based filesystem similar to /proc or /sys
• Data is exported in any format needed or multiple formats JSON, ASCII text,

binary, …

• Extract the data via any method just by reading the filesystem files

• Able to find DPDK applications and command line used to start the
application

• Other possible solutions to gather the data are possible

