
x

Recent Power Management

Enhancements in DPDK
DAVID HUNT, CHRIS MACNAMARA

2

Updates Since Last Time

• Quick reminder…. feature review

• Updates & Discussions to follow

• How does an application let something know how busy it is?

• New telemetry mechanism target polling workloads

• How do we get more performance for the same power?

• New hardware mechanisms for giving frequency where it’s needed

3

Existing DPDK Power Capabilities

Many use cases, support for direct control, virtualized architecture

Virtual Machine

DPDK application

virtio-serial
Policy

Control

VM Power Manager
on host

DPDK Sample applications

Linux Power Governor

CPU0 CPU1

VCPU0 VCPU1

CPU7CPU6

DPDK Sample applications
On host

Time of day
Packet Arrival Rate

Librte_power APIs

Librte_power APIs

NIC PF

NIC VF

Vsi
stats

Sample
PolicyLibrte_power APIs

4

Usage Options

• Bare Metal – librte_power APIs

• Turn up/down frequency to save energy, performance via

• Virtualized Applications

• App in VM sends change frequency command to host (vm_power_manager)

• App in VM sends policy (time of day) to host (vm_power_manager)

• Virtualized Environment with no Application Instrumentation

• Using CPU counters, can tell idle or busy, not how busy…

Docs on the way :

https://dpdk-power-docs.readthedocs.io/en/latest/sample_app_ug/vm_power_management.html

5

Existing DPDK Power Features

Challenge / Problem DPDK Solution / Status

L3fwd power using C states (updates

coming)

Sample app

Traffic always running, always on cores. Save

power when low traffic, boost when busy.

Added core Frequency State APIs including Turbo

Boost

Virtualized Software Architecture: High

latency of direct requests to change

frequency

Move to policy based control: Time of day / Packet

Arrival Rate

App Agnostic mechanism to detect when

DPDK is 100% polling and no packets or work

Sample code: Branch prediction ratio used as

trigger to detect idle -> modify power

Pin DPDK threads/lcores to high priority cores Pinning relevant workloads to Turbo Cores

Power Policies for Containers FIFO interface to Power Manager that accepts

policies via JSON

Librte_power APIs and Sample Apps

6

New DPDK Features Since Last Time!

Challenge / Problem DPDK Solution / Status

Exposing how busy an application is to external

systems, no standard method

Introduce new telemetry for busyness metrics,

patch to DPDK, collectd

Some workloads need more performance to help

balance a multi-core workload

Add support for Intel® Speed Select Technology

– Base Frequency – pinning to high priority cores

Enhanced security around Container

communication to Power Manager

Updates completed

New triggers and capabilities enabling new use cases

Determining

Busyness of

Polling

Applications

….

And How to Use It

8

1. Busy Indication Used to Save Energy

DPDK

100% Polling

Remote/Slow Loop Reaction (s/m/h)

Application Load

DPDK

100% Polling

DPDK

100% Polling

VM Container Bare Metal

collectd

Telemetry

Agent

DPDK plugin

CPU Power Controls

Adjust

Frequency to

match load

Busyness

Telemetry

Node Agent

9

2. Busy Indication to Detect Overload

DPDK

100% Polling

Remote/Slow Loop Reaction (s/m/h)

Overload

DPDK

100% Polling

DPDK

100% Polling

VM Container Bare Metal

Collectd

Telemetry

Agent

Dpdk plugin

CPU Power Controls

Traffic steering

Busyness

Telemetry

Load Balancing

Turbostat

plugin
pkgwatts

Node Agent

10

Pushed Patches To Support This (telemetry)

@Init

Application calculates what

constitutes 100% busy

@development

Application implements

algorithm for it’s own ‘busyness’

@run

Application populates

relevant metrics

@run

Third party app pulls metrics

(collectd, dpdk_telemetry.py)

• Released as part of DPDK 19.08

• In addition to per-port metrics, telemetry lib

now has global metrics per app (busyness,

number of polls, etc.).

• L3fwd-power implements example algorithm

to demonstrate populating the new metrics.

• dpdk-telemetry.py now shows the new

global stats

• New plugin for “collectd” being upstreamed

to be able to view DPDK telemetry.

11
Use telemetry to make informed decisions

Allowing applications publish how busy they are

• Patch to telemetry library to allow for

global stats, not just port specific

• Patch to l3fwd-power to add telemetry

mode to publish busyness

• New plugin for collectd to read this

telemetry

• White paper in progress to demonstrate

use case for putting it all together
Platform

collectd
100% Polling

e.g DPDK

VM

Grafana
Network Load

Controller

Load Balancer

N
o

d
e

 o
r A

p
p

lic
a

tio
n

O
v

e
rlo

a
d

 in
d

ic
a

tio
n

Traffic

Busy

Indicati

on
Metrics

PkgWatt

s

1

1

2
3

4 Steering

decision

Network Platform

12

Use case for busyness telemetry

• Alert generated when busyness goes over 80%

• Network Load Controller splits traffic on each alert

• Each traffic stream goes to different destination

• Load balancing takes effect

Orchestration now DPDK Busyness visibility

Rx Bytes across all VMs / Containers

Alerts

Rx bytes across all VMs / Containers

‘busyness’ across all VMs / Containers

1 stream 2 streams 3 streams 4 streams

Maximising

Performance

within the same

Power Envelope

14

Prioritization?

Performance Prioritization Opportunity

DPDK Based Networking Workloads

• Unbalanced workloads – NFV Data Plane or Control Plane, OVS

• Pipeline software architectures

• Frequency bound workloads

• Priority threads for run to completion

• Packet distribution / workload distribution in SW

• PMD consolidation

15
Unlock performance bottlenecks

Re-balancing power & frequency to enhance

DPDK performance

• A CPU mode allows SW to configure an

asymmetric core frequency.

• The placement of key workloads on higher

frequency enabled cores can result in an

overall system workload increase as compared

to deploying the CPU with symmetric core

frequencies.

• 6-8 High Priority cores, depending on CPU.

• Intel® SST-BF allows this configuration

16

Application Interface

@Init

Application pins critical

workloads to high priority cores

@init

Application queries capabilities

of each available core

@run

Application runs as normal

• Additional bit returned by

rte_power_get_capabilities indicating High Priority

cores:

Implemented in l3-fwd-power sample

17

No DPDK Application or Workload Mods

• Just launch…using EAL launch to map lcores to physical cores

• It was hidden (to us anyway)

• https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html

https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html

“

”

Thank You

Chris MacNamara (chris.macnamara@intel.com)

David Hunt (david.hunt@intel.com)

Acknowledgements

Lee Daly, Reshma Pattan, Anatoly Burakov, Liang Ma

+ “Collectd” team https://github.com/collectd

https://github.com/collectd

