Dynamic mbuf



. DPDK
Features require metadata 2 DPDK

- offloads in NIC
load balancing (flow steering)
segmentation (LRO, TSO)
checksums

classification
tunneling, inline protocol processing (IPsec, NVMe)

- |lookaside or inline processing
crypto symmetric/asymmetric
lossless compression/decompression (stateless or stateful)
pattern matching

- Note: software emulation can fill some gaps




struct rte=mbuf @ DLAPDK

Metadata for a network packet segment

Data size, pointer (virtual and IOVA), private data size, external buffer metadata pointer
Segment size, total count and pointer to next

Protocol data (packet type, layer sizes, tunnels, checksums, VLAN, LRO, TSO, IPsec...)
Flow classification (port id, queue id, hash, traffic class...)

Timestamp, PTP

User metadata

Offload flags



Private Data for Applications @ PFDK

Space can be reserved on mempool allocation

mbuf app 4—)» dat -
struct priv : headroom ata tailroom

- Application configures mempool

Transparent for DPDK



DPDK

Current mbuf
Limitations




Limited Space @ DPDK

- Small mbuf == Less cache misses

First 64 Bytes

- Only 2 cache lines (sualy one
2 X 64 =128 Bytes
depends on architecture

Second 64 Bytes

- Last free space
pahole finds 16 Bytes at the end } 16 Bytes




Wasted Space @ DPDK

For one application, “\\a-.«
For one use case,

Some mbuf fields are not used.

Some features are rarely used.



. DPDK
Mutually Exclusive Features 2 DPDK

- Long term, features using the same bytes will clash

Placeholders with vague description are bad

seqgn, tx metadata, userdata, usr

Unions of separate features are bad

user tag

RSS FDIR low sched queue (distributor) Tx metadata

32-bit FDIR high sched eventdev
class + color TX queue




Stability 2)DPDK

Removal or move in mbuf is a strong ABI break

Vector implementations are tied to mbuf layout

Slow evolution

Target: no layout change at all in future



Elsewhere

5

DPDK

DATA PLANE DEVELOPMENT KIT

- Same issue in Linux XDP
http://vger.kernel.org/netconf2019 files/xdp-metadata-discussion.pdf

- FreeBSD m_tag
https://www.freebsd.org/cgi/man.cgi?query=mbuf taqs

10


http://vger.kernel.org/netconf2019_files/xdp-metadata-discussion.pdf
https://www.freebsd.org/cgi/man.cgi?query=mbuf_tags

DPDK

Extend with
Dynamic Fields




Flexible
- any length
- chained

Performance impact
- allocate/ free
- cache miss

Needs specific pools

12



Why not Increasing Size? o 2)DPDK

- Simple

- Performance impact

- Does not avoid ABI breakage each time layout is changed

- Space Is still wasted (many unused fields)

13



. DPDK
Why not Selective Layout? B 9

Application would choose

between different mbuf layouts

depending on its needs

. Requires as many structures as use cases

- Difficult to adapt and optimize drivers for all possible layouts

14



Design of Dynamic Fields 2 DPDK

Register
on demand, depending on use case name
unused fields don’t use space in mbuf i
P _skee » offset
alignment
flags
Drivers and applications accessto a dynamic offset in the mbuf
small performance impact
System-wide
impacts all mbufsin all pools
name :
Same logic for dynamic bits in offload flags count » bit number

15




API

@

DPDK

DATA PLANE DEVELOPMENT KIT

const struct rte mbuf dynfield rte mbuf dynfield my feature

.name = "rte mbuf dynfield my feature",
.size = sizeof (uinto4 t),

.align = alignof (uinto4d t),

.flags = 0,

e

Register the field

offset = rte mbuf dynfield register (&dynfield);
if (offset < 0)
/* error */

Read/Write the field

*RTE_MBUF DYNFIELD (mbuf, offset, uint64 t *) = 0x1337beef;

{



Example of Field @ DPDK

- Helper to register flag and field together

rte mbuf dyn timestamp register ()

- Feature-specific accessors
rte mbuf dyn timestamp get (mbuf)
rte mbuf dyn timestamp set (mbuf, value)

rte mbuf dyn timestamp avail (mbuf)



Drawbacks / Limitations @ DPDK

Lower performance than accessing a static field

- Early benchmark:

+2 cycles for write access
+3 cycles for read access

Cannot unregister dynamic fields

No magic: space is still limited (but more flexible)



DPDK

Get even
More Space




Plan for Future

DEDX

DATA PLANE DEV

Sustainable if enough space to combine a lot of features

Convert some fields from static to dynamic

Would add room in Rx (first) cache line
performance gain for fields moved in Rx part
registration flags to choose the cache line

" g

o ¢

g

mbuf

Removed static
fields become new
room for

dynamic fields

20



Criteria for Dynamic Field @ DPDK

Uncommon use
- Vendor-specific
Performance degradation by a couple of cycles not critical

Union'ed (exclusive) feature



=) DPDK
Remove User Data 9

mbuf field (in second half)

- vold *userdata

- uilnto4d t udataoc4

- Application can register its own well-defined field



DPDK
Remove User Tag @

mbuf field (union'ed in first half)

- ulnt32 t usr

Cannot be used together with RSS hash

Used only by distributor library
- could use a well-defined dynamic field



Convert External Buffer Data Pointer @ DPDK

mbuf field (in second half)

- struct rte_mbuf_ext_shared_info *shinfo

- Accessed only on external buffer attach

Part of mbuf API
- Difficult to convert



Convert PTP @ DPDK

Offload flags

- PKT RX IEEE1588 PTP
- PKT RX IEEE1588 TMST
- PKT TX IEEE1588 TMST

mbuf field (in second half)
- uintl6 t timesync

IEEE1588 PTP is a payload on top of UDP
Why is it part of mbuf API?



Convert Timestamp @ DPDK

mbuf field (in first half)

- ulnto4d t timestamp

Not performance critical?
Not widely used
In first half (Rx part)



DPDK
Convert Sequence Number @

mbuf field (in second half)
- ulnt32 t segn

Not enough defined

Not widely used



. . DPDK
Convert Hierarchical Scheduler @

mbuf sub-struct (union'ed in first half)
- ulnt32 t queue 1id
- uilnt8 t traffic class

- ulnt8 t color

Feature union'ed with RSS

QoS not always done



Convert eventdev Tx Adapter 2)DPDK

mbuf field (union'ed in first half)
- uintl6o t txqg

Feature union'ed with RSS

eventdev not always in use



Convert Tx Metadata

9 DATA PLANE DEVELOPMENT KIT

mbuf field (union'ed in first half)
- ulnt32 t tx metadata

Feature union'ed with RSS

- Application-specific usage



More? @ DPDK

Other fields could be discussed.

The conversion may be a long way
happening as jumps when ABI breakage window Is open.



Conclusion

TO REVIEW (for 19.11)

Add dynamic mbuf API.

TODO (for 20.11)

Migrate some static fields to dynamic.



DPDK

Questions?




