@ DATA PLANE DEVELOPMENT KIT

Armv8 WFE Mechanism and
Usage in DPDK

GAVIN HU
ARM

« AArch64 WFE instruction

- New APlIs

- Usage in DPDK

- Results

WEFE instruction and supporting components @ DPDK

- WFE = Wait For Event

- When a CPU is in the wait state, it can be woken up by
any event

- Events that can wake the CPU include:
- SEV (send event),

- loss of an exclusive monitor (in ArmVa8).

WEFE Instruction and Supporting Components @ DPDK

- A memory location is network
. 30\| cacheline ! /‘5
monitored 5 . m| N
: - -~ N N monitor § size 5 NIC
- Store to the location triggers ol L.
core wake-up events notfy ‘ noty
_ wrg) 1 ‘ (WFE)
- Wake-up brings core out of 1] .] | e | |]
low power state S 2 ~ %
. 20 20 14
- Spurious wake-ups are & -
. “\ ; || system
possible and must be i B ;
A
handled 1
o\ Main memory

FIG. 1

WFE Working Generic Flow SECUN

1. Clear event registers
2. Activate monitoring of location
3. Wait (enter the low power state)

4. Wake up and continue processing

Abstract APIs @ DPDK

- Add the APIs of two memory model flavors
- rte_wait_until_equal_relaxed 16/32/64
- rte_wait_until _equal acquire 16/32/64

- Abstract APl implemented for all architectures
- AArch64 implementation uses WFE and related instructions

- Implement as continuous poll loop for other arches not
iImplementing WFE

WFE Usage in Spinlock @ RLDK

- http://patches.dpdk.org/patch/59265/

- This implementation does not use the new API

- To save the loading of zero and compare against it and the
branch

- WFE may behave differently on different Arm cores, use
recommended instruction sequence [1]

[1] https://developer.arm.com/docs/103489537/latest/why-do-different-cores-
behave-differently-when-executing-a-wfe-instruction

WEFE in Ticket Lock SELEN

- Wait for the current ticket number to equal
my ticket

- http://patches.dpdk.org/patch/59266/

-- a/lib/librte_eal/common/include/generic/rte_ticketlock.h
+++ b/lib/librte_eal/common/include/generic/rte_ticketlock.h
@@ -66,8 +66,7 @@ static inline void

rte_ticketlock_ lock(rte_ticketlock_t *tl1)

{

uintl6e_t me = __atomic_fetch_add(&tl->s.next, 1, _ ATOMIC_RELAXED);
while (__atomic_load n(&tl->s.current, __ ATOMIC_ACQUIRE) != me)
rte_pause();
+ rte_wait_until_equal_acquire_16(&tl->s.current, me);

- This example shows how to employ the new API..

WEFE in Ring Buffer SELEN

- Multiproducer (MP) and multiconsumer (MC) rings
- Wait for ring tail to be updated by preceding P/C thread(s)
- Tails have to be updated in the order of moving heads

- Update both generic and C11 ring implementations
- http://patches.dpdk.org/patch/59267/

diff --git a/lib/librte_ring/rte_ring_generic.h b/lib/librte_ring/rte_ring_generic.h
index 953cdbb..6828527 100644
--- aflib/librte_ring/rte_ring_generic.h
+++ b/lib/librte_ring/rte_ring_generic.h
@@ -23,8 +23,7 @@ update_tail(struct rte_ring_headtail *ht, uint32_t old_val, uint32_t new_val,
* we need to wait for them to complete
*
if (!single)
while (unlikely(ht->tail != old_val))
- rte_pause();
+ rte_wait_until_equal_relaxed_32(&ht->tail, old_val);

ht->tail = new_val;

}
e A W A —

Other examples

j DATA PLANE DEVELOPMENT KIT

- EVENT/OPDL

. http://patches.dpdk.org/patch/59269/
- ThunderX NICVF

. http://patches.dpdk.org/patch/59268/

10

Power efficiency potential of WFE with polling

2

DPDK

DATA PLANE DEVELOPMENT KIT

2.5E+10

[¢,] (@]
m m
+ +
(@] (@]

amic Instructions over 5sec
7
=)

.OE+09

Dyn

0.0E+00

Dynamic Instructions across Packet

I

TR WE THRE 16T 1
&

ates 100%

1 90%

80%

70%

60%

50%

40%

30%

% Empty Polls over 5sec

20%

e WFE

= Polling 10%

0%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

% of 10 Gbps

Mellanox ConnectX-5 driver (mlIx5) in DPDK modified to use WFE
DPDK pktgen with 10 Gbps i'face to testpmd on ThunderX2 with mIx5

Empty Poll Percentage across Packet

\ N\ /\vA
Vasase
L\
—WFE N N\
= Polling

0O 5 10 1520 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

% of 10 Gbps
* 1receive queue on NIC

1

Polling: Wasteful of energy!

Polls per millisecond

1000
900
800
700
600
500
400
300
200
100

o

10,000 50,000 100,000

m empty polls mnon-empty polls

150,000 200,000 230,000

Throughput (requests per second)

memcached
using

OFP + ODP-
DPDK

source.

Strategies for
Improving Tail
Latency for Poll-
Based

Networking,

Steve Zekany

(Arm intern

2017) -

DPDK Power Optimization
Research by Intel

Intel reported around 30% reduction in power
consumption with L3fwd-power using on-
demand CPU power state tuning.

“Based on a US EPA study, they assume that
network equipment spends 25% of the time
with high traffic (active state) and 75% of the
time with low traffic (idle state)”

Performance Profile - DPDK L3fwd-Power

163506 153.6
140

120 107.3 111.6

101.4 —
-~
2 100 88.4
5 78.4
= 80
60
40
20
(o]
0 10 20 30 40 50 60 70 80 20 100
Load %
—&— [3fwd-pwr —@—|3fwd --------- Linear (13fwd)

https://www.intel.com/content/dam/www/public/us/en/documents/whit
e-papers/dpdk-power-optimization-advantech-white-paper.pdf

CBR Traffic Expeoriments
Application Efficiency Comparison

HL2FWD-DPDK HL2FWD-ADAPT

60.41% 71.61% 77.12% 79.66%
X ()

52.85%
100.00%
80.00%
60.00% . 4
40.00%
20.00% ' 1, |

0.00% 2.02% 7.82%

| Full Polls / Total Polls in (%)

30.21% 28.64% 25.06%
1 GB/ sec 2 GB/ sec 4GB/ sec 8 GB /sec 10 GB / sec

Line Rate

hitps://ulir.ul.ie/bitstream/handle/10344/6246/Hristo_Trifonov_Research Report
.pdfe¢sequence=2

113.2 113.6 IPMENT KIT

13

OpenSHMEM Wait with WFE (single address)

9 DATA PLANE DEVELOPMENT KIT

Latency (microseconds)

Latency of 'put’ ping-pong
with shmem_wait()

25 : :

ARM Optimized Regular
shmem_wait() shmem_wait()

(@)

Instruction count

2e+09

1.5e+09

1e+09

5e+08

Total Benchmark
Instruction count

ARM Optimized Regular
shmem_wait() shmem_wait()

(b)

Cycle count

1.6e+09

1.4e+09

1.2e+09

1e+09

8e+08

6e+08

4e+08

2e+08

Total Benchmark
Cycle count

ARM Optimized Regular
shmem_wait() shmem_wait()

()

Enabling One-sided Communication Semantics on ARM, Shamis et al.,

IPDPSW 2017

More use cases /) D PQEK

Datacenter
v Ethernet Poll Mode Driver (DPDK)

HPC
- MPI
v OpenSHMEM
RDMA user level poll mode

Thread communication over shared memory
Direct block device /O (Linux io_uring)
POSIX asynchronous I/O

Generic I/0 multiplexing facility (epoll in hardware)

15

Gavin Hu
aavin.hl_lljarm. Than kS

com

