rte rawdevice:

Implementing Programmable

Accelerators using Generic
Offload

Hemant Agrawal, Shreyansh Jain - NXP
DPDK Summit - San Jose — 2017

#DPDKSummit



Problem Statement: Why a

‘rawdevice ?

» Device ‘flavour’ currently available in DPDK are limited by their characteristics

librte_ether librte_cryptodev librte_eventdev

What happens for cases like
these? How to integrate them
with DPDK Framework?

» A generic ‘flavor’ of device is required which can represent non-generic cases
» Custom or Specific function IP Block — Compression Engine, Pattern Matching Engine etc.
» Leveraging Device Bus model for their scan->probe->consume cycle

» Acceleratingadoptionofsuch blocks without creating new lib/* for each new type of device



Problem Statement: Why a

‘rawdevice ?

» Why rawdevice is betterthan device specific APIs
= Applications prefers uniform device view: start/stop, queue/ring config, enqueue/dequeue
= Uniform programming model across devices —all accelerators under rawdevice

= Quick turnaround time—changesto lib/* for a new devices is a longer cycle

» A generic set of APIs for applications— covering a broad category of accelerators/IPs
» Command/Control APls: start/stop, configure a device, query configuration
» Datal/O APIs: enqueue/dequeue single or multiple buffers
» Query APIs: Statistics, register dumps

» Firmware Management APIs: load, unload, version information



Definition of a “rawdevice™ (1/2)

» A *rte_rawdevice® is a raw/generic device without any standard configuration or
input/output method assumption.

» The configure, info operation will be opaque structures.
» The queue/ring operations will not assume any data or buffer format.

» Specific PMDs should expose any specific config APls — not expecting portability.

Rte_device

rte_eth_dev rte_cryptodev rte_eventdev rte_xyz... rte_raw_dev




Definition of a "rawdevice™ (2/2)

» rte_rawdevice — A generic device for non-generic IP Blocks

r’re_rowd.ev_do’ro { Opagque private data can store
SOCK?T—'d; «— | any device>driver
dev_id; handshake data for the
rre_rawdev { ”k?—queUSS; o device. Only interpreted by
rfe_rawdev_data *data; private; /* opaque info */ application and driver
rte_rawdev_ops *dev_ops; name,
rfe_device *dev; }
rte_driver *driver;
" attached: 1; rte_rawdev_ops {
' start/stop/reset;
queue setup/teardown; «—"1 More common operations can
enqueue/dequeue bufs; be added to this to make it
xstats get/reset; more ‘generic’.

firmware load/unload/version;



Accelerator Offload Use-case on NXP

» NXP Platform has a programmable engine,
called ‘AIOP’

» The engine can exposes a NIC interface and a
command-control interfaces for GPP-side,
detectable on fsl-mc bus.

User Applications

» The application need to configure the enginein
order to use it.

L | emdi/f NIC -* i NIC-
» NXP providesa library exposing the application ! AIOP | e
level APIs and convert them to command ] I 5
""""" NEPhy "]~~~
messages. |

» Some of the example use-cases are ovs offload
or wireless offload. 1 1 1 _____ 1



Accelerator Offload Use-case on NXP

SoC

> AIOP device is scanned over ‘fsimc’ bus and
probed through a DPAA2 driver

» [P4| DPAA2 driver creates a rawdevice and
initializes it. Hereafter, this device is available
as a port for the applicationto use

> Application opensthe rawdevice port. It can
then access rawdevice APIs for device
configuration/firmware management/state

SR PO
- I '

» |Ed Some other custom APIs are exposed
directly from PMD for application to use




Example: Layering bbdev over

rawdevice

» bbdev or Wireless Base Band device — recently proposed by Amr Mokhtar
rte_bbdev_ops { rte_rawdev_ops {

configure; start; stop; close; configure/start/stop/close/reset;

a

info_get, stats_get, stats_reset; < xstats get/reset;

a

queue_setup/release/start/stop;
% }
rte_bbdev {

enqueue_enc_ops;
enqueue_dec_ops;
dequeue_enc_ops;
dequeue_dec_ops;

queue_setup/release/configure;

rte_rawdev_data *data;
) rte_rawdev_ops *dev_ops;
rte_device *dev;
An example rte_driver *driver;

. attached : 1;
} linkage

‘ rtre_rawdev {




Example: Layering bbdev over

rawdevice

» ‘drivers/raw/bb_pmd’ calls RTE_PMD _ REGISTER_PCI(...)

» ‘bbdev is scanned by standard Bus implementation (assuming PCI)

» During probe, deviceis identified by ‘drivers/raw/bb_pmd’ and initialized

» rte_rawdeviceinstanceiscreated and populated;
» Either have custom APIs exposed for extra functions, or overload the rte_rawdevice (private data)

» Applicationcan use ‘bbdev’ through rawdevice port number



What next”?

» Generalizing across well known devices like FPGA, Compression IP
» Generic adapters for ethernet/crypto/eventdev devices

» How to add more operations without affecting core structures?
» ~IOCTLs?

» Opaque structures containing device specific operations



Hemant Agrawal hemant.agrawal@nxp.com

Q Elas | O I’]S? Shreyansh Jain shreyansh.jain@nxp.com




Properties for raw device

> rte_raw_dev_data
- Uinf8_t dev_id rte_raw_fw_ops
* UNIt8_t nb_queues; e fw_load
e UiNt8_t dev_started:1; e fw_status
* void *dev_private

» fw_clock_sync
e void *dev_info

* fw_config
e raw device e Struct rte_driver *driver « fw_unload
_ _ * Char name [RTE_RAW_MAX_NAME] e fw_stats

estruct rte_raw_dev_data *data

estruct rfe_raw_dev_ops *dev_ops
e struct rte_raw_fw_ops *fw_ops

*Struct rte_device *dev rte_raw_dev_ops
e Struct rte_driver *driver e dev_info_get
e Uint8_tin_use:1 * dev_configure

e dev_start

* dev_stop

* dev_close

* queue_def_conf
* queue_setup

* queue_release

* Dump

» Xtarts _get

» Xstats_reset




What is different from rte_prgdev ?

» The last proposal of rte_prgdev, mainly focused on firmware image
management.

» rte_raw_dev focus is attempting to provide a uniform device view and
accelerator access to the applications.

» rte_raw_dev is not discounting firmware management, but makes it an
optional component.

» rte_raw_dev can serve as a staging device for un-common newly added
device flavors.

» Anycommonlyused rte_raw based device can be converted into it’s own specific
flavor.



SoCs — Flexible Programming

AN @l =
»Packet Processing
GPP Core contrr >(1) Autonomous:

Path Cores Packets are received, processed and sent within

the HW Engine. HW engine controller can
programmed with different autonomous
applications.

>(1) & (2) Semi Autonomous: Packets are
received by HW Engine. HW Engine controller
does part of processing. GPP cores do rest of

II;

GPP Core (2)
Data Path

Cores processing and send the result packets out.
DPAA >(2) Non-Autonomous:
SEC Entire packet processing happens within GPP

cores with no help from HW controller.

»Other acceleration-any kind of HW offload.
»Pattern Matching
>»Data Compression

Pattern

Data Comp

14



