
DPDK	Summit	- San	Jose	– 2017

Enhanced Memory 
Management

#DPDKSummit



2

Challenges

u The	world	is	changing

u Adapt	to	varying	application	requirements
u Performance,	Security,	Footprint,	Robustness?

u Native,	Containers,	VMs,	Unikernels?

u x86,	ARM,	PowerPC,	…	?

u Linux,	BSD,	Windows,	…	?

u Abstract	complexities	of	the	environment	from	applications
u Different	environments	with	variable	ways	to	allocate/attach	to	memory

u Same	valid	for	other	resources	such	as	network	interfaces,	HW	accelerators	etc.



3

Current Limitations

u Static	hugepage memory	allocation	at	DPDK	initialization	time
u Dynamic	allocation	is	not	possible

u Memory	initialization	takes	a	long	time	(collecting,	mapping,	zeroing)

u DPDK	relies	on	physical	memory	information	(not	always	available)
u Physically	contiguous	segments	(allocation	failure	if	no	physically	contiguous	mem)

u PMDs	rely	on	physical	memory	for	DMA

u No	virtually	contiguous	memory	support

u No	support	for	memory	mapped	files,	shared	memory	segments,	
ivshmem,	ramfs etc.



4

Un-initialized memoryDPDK memory

DPDK Today – Memory Initialization

u DPDK	grabs	all	required	hugepages and	fills	up	its	heap	during	initialization

u Everything	is	mapped	with	R/W	permissions	in	all	processes

Process
#1

Process
#2

Process
#3

R/W



5

1G

1G

1G

1G

1G

1G

1G

1G

DPDK Today – Multi-process Sequence

DPDK memory

Process
#1

Process
#2

memory allocated/used by Process #2

memory allocated/used by Process #1

DPDK
socket

0

Primary 
Process

1) Primary	Proc	#1	and	Proc	#2	started

2) Proc	#1	initsmemory,	Proc	#2	is	waiting

3) Primary	Proc	#1	releases	lock,
Proc	#2	attaches	to	DPDK	memory

4) Both	processes	start	allocating	memory	
at	the	same	time	(lock	contention)

Zzzz…

No Isolation!
No Memory Protection!

No fine grain control of object placement!
(except NUMA and page sizes)



6

Enhanced Memory Manager Framework

Hugepages

md_attach

Heap/mmap Shared Mem

Memory allocator manager

IVSHM

DPDK

Memory Domain

External Memory Plugin

Applications

md_reserve md_attach

Enhanced Memory Manager Framework



7

Proposal

u Both	DPDK	and	the	enhanced	memory	manager	are	used	by	applications
u Maintain	backward	compatibility

u Applications	could	directly	use	memdomain	APIs	to	get	required	memory	on	demand

u Extend	DPDK	to	support	external	memory	manager	plugins
u DPDK	would	be	a	user	of	memory	domain

u Enhanced	memory	manager	is	a	framework
u support	many	types	of	memory	allocators,	such	as	hugepages,	mmap/heap,	shared	

memory,	or	inter-vm	shared	memory



8

memdomain LocalMem {
type = exclusive
cpualias = “app_fg”
policy = on-demand
size {

huge_1G = 4GB
}
no_zero = true

}

Un-initialized memoryLocalMem[1] Localmem[3]
memdomain MainMem {

type = numa
cpualias = “all”
policy = static
size {

huge_4K = 128MB
huge_2M = 256MB

}
}

Named Memory Partitions - Feature

Process
#1

Process
#2

Process
#3

DPDK memory

R/W

R/O

LocalMem[2]MainMem

u DPDK/Apps	are	attaching	to	named	partitions	pools	(memdomains)

u Multiple	processes	can	attach	to	partitions	with	distinct	access	rights

u Processes/threads	can	attach	to	named	partitions	on-demand



9

4K/2M

1G

1G

1G

1G

1G

1G

1G

1G

Named Memory Partitions - Sequence

DPDK memory

Process
#1

memzones allocated/used by Process #2

memory allocated/used by Process #1

DPDK
Socket 0Primary 

Process
1) Primary	Proc	#1	and	Proc	#2	started

2) Primary	Proc	#1	inits “MainMem”	partition

3) Proc	#2	awakes,	attaches	to	“MainMem”

4) Proc	#1	and	#2	attaches	to	“LocalMem”	
(allocates/maps	partition)	– no	zero	on	req.

5) Both	processes	start	allocating	memory	
within	their	own	partition	(no	contention)

Zzzz…

Process
#2

LocalMem[1]

DPDK
SocketId

1<<8

LocalMem[2]

DPDK
SocketId

2<<8Access Control!
Placement Control!

Isolation!
Memory Protection!



10

Named Memory Partitions - Possibilities

u Flexible	environment	specific	configuration
u Adapt	to	different	architectures,	e.g.	no	page-size	hard-coding	in	application

u Adopting	configuration	to	required	policy,	e.g.	Performance,	Security,	Footprint

u Performance	tuning	accelerated	by	publishing	different	configurations

u Access	control
u External	resource	manager	managing	the	resources	of	applications	running	in	

containers	or	VMs

u Memory	classification
u Creating	fast/medium/slow	partitions	on	x86	(zero	TLB	miss,	2M	huge,	4K)

u Physically	contiguous	memory	partition	only	for	DMA



11

Named Memory Partitions - Possibilities

u Virtual	address	space	control:
u Short	pointer	support	by	requesting	specific	virtual	address	range
u On	demand	static	or	dynamic	virtual	address	assignment

u Transparent	NUMA	awareness
u Each	process	requests	local	memory	partition	which	is	created	based	on	the	location	of	that	

instance

u Scale	up/down
u Allocate/Free	resources	on-demand	as	processes	start/stop

u Support	of	different	types	of	shared	memory	techniques
u Named	partition	for	Inter-container	or	Inter-VM	shared	memory	(global	namespace)

u etc.



12

Previous Work

DPDK Summit 2014 DPDK Userspace 2015



Questions?

Laszlo	Vadkerti
laszlo.vadkerti@ericsson.com
Jiangtao	Zhang
tom.zhang@ericsson.com



THANK YOU!


