#DPDKSummit

Challenges

» The world is changing

» Adapt to varying application requirements
» Performance, Security, Footprint, Robustness?
» Native, Containers, VMs, Unikernels?
» x86, ARM, PowerP(C, ... ?
» Linux, BSD, Windows, ... ?

» Abstract complexities of the environmentfrom applications
» Different environments with variable ways to allocate/attach to memory

» Same valid for otherresources such as networkinterfaces, HW accelerators etc.

Current LimiteiEiCisE

» Static hugepage memory allocation at DPDK initialization time
» Dynamicallocationisnot possible
» Memory initialization takes a long time (collecting, mapping, zeroing)
» DPDK relies on physical memory information (not always available)
» Physically contiguous segments (allocation failure if no physically contiguous mem)

» PMDs rely on physical memory for DMA

» No virtually contiguous memory support

» No support for memory mapped files, shared memory segments,
ivshmem, ramfs etc.

DPDK Today — Memory Initialization

» DPDK grabs all required hugepages and fillsup its heap during initialization

» Everythingis mapped with R/W permissions in all processes

DPDK memory

R/W

Process Process Process
#1 #2 #3

1)
2)

3)

4)

DPDK Today — Multi-process Sequence

Primary Proc #1 and Proc #2 started
Proc #1 inits memory, Proc #2 is waiting

Primary Proc #1 releases lock,
Proc #2 attaches to DPDK memory

Both processes start allocating memory
at the same time (lock contention)

No Isolation!
No Memory Protection!

No fine grain control of object placement!
(except NUMA and page sizes)

Primary
Process

Process
#1

Process
#2

DPDK memory

- memory allocated/used by Process #1

memory allocated/used by Process #2

DPDK

DPDK
>—
socket
0

Enhanced Memory Manager Framework

DPDK

Applications
DPDK
External Memory Plugin
! md_attach V md_reserve é’md_attach
i Enhanced Memory Manager Framework :
Memory Domain
v
Memory allocator manager
v v v v

Hugepages Heap/mmap Shared Mem IVSHM

Proposal

» Both DPDKand the enhanced memory manager are used by applications
» Maintain backward compatibility

» Applications could directly use memdomain APIs to get required memory on demand

» Extend DPDK to supportexternalmemory manager plugins

» DPDK would be a user of memory domain

» Enhanced memorymanageris a framework

» support many types of memory allocators, such as hugepages, mmap/heap, shared
memory, or inter-vm shared memory

Named Memory Partitions - Feature

» DPDK/Apps are attaching to named partitions pools (memdomains)
» Multiple processes can attach to partitions with distinct access rights

» Processes/threads can attach to named partitions on-demand

memdomain MainMem { DPDK memory
type = numa MainMem | LocalMem|[1] | LocalMem][2] | Localmem][3]
cpualias = “all”
policy = static
size {
huge 4K = 128MB R/W
huge 2M = 256MB
J - R/O Process Process Process

} #1 #2 #3

1)
2)
3)

4)

5)

Named Memory Partitions - Sequence

Primary Proc #1 and Proc #2 started
Primary Proc #1 inits “MainMem” partition
Proc #2 awakes, attaches to “MainMem”

Proc #1 and #2 attaches to “LocalMem”
(allocates/maps partition)— no zero on req.

Both processes start allocating memory
within their own partition (no contention)

Access Control!
Placement Control!
Isolation!
Memory Protection!

Primary
Process

Process
#1

Process
#2

DPDK

DPDK memory

Socket 0

—_—

\

LocalMem|[1]

DPDK
Socketld
1<<8

LocalMem|[2]

[DPDK
Socketld
2<<8

—

- memory allocated/used by Process #1

memzones allocated/used by Process #2

Named Memory Partitions - Possibilities DPDK

» Flexible environmentspecific configuration

» Adapttodifferentarchitectures, e.g. no page-size hard-codingin application
» Adoptingconfigurationto required policy, e.g. Performance, Security, Footprint

» Performancetuningaccelerated by publishingdifferent configurations

» Access control

» External resource manager managingthe resources of applications runningin
containersorVMs

» Memory classification

» Creatingfast/medium/slow partitions on x86 (zero TLB miss, 2M huge, 4K)

» Physically contiguousmemory partition only for DMA

Named Memory Partitions - Possibilities DPDK

» Virtual address space control:
» Short pointersupport by requestingspecificvirtual address range
» On demand staticor dynamicvirtual address assignment

» Transparent NUMA awareness

» Each processrequestslocal memory partition which is created based on the location of that
instance

» Scale up/down

» Allocate/Freeresources on-demand as processes start/stop
» Support of different types of shared memory techniques

» Named partitionforInter-container or Inter-VM shared memory (global namespace)

» etc.

Previous Work

DPDK Summit 2014 DPDK Userspace 2015

\

ERICSSON

Ericsson Lead Software Developer

Andras Kovacs
Ericsson Lead Software Developer /\/\ A I\\l A G E R

Multi-Socket Ferrari for NFV ANDRAS KOVACS RS s e e s s oy

LASZLO VADKERTI (LASZL

Ehszi6 Vadkerti GEN
RE

A manager we would like)

[=]
[=]

Laszlo Vadkerti
laszlo.vadkerti@ericsson.com

Questions? Jiangtao Zhang
tom.zhang@ericsson.com

THANK YOU!

