
Rony Efraim

DPDK summit Dublin Oct 2016

Open vSwitch DPDK Acceleration Using HW

Classification

© 2016 Mellanox Technologies 2

 ASAP2 take advantage of ConnectX-4 capability to accelerate or offload “in host” network stack

 Three main use cases

Accelerated Switch And Packet Processing (ASAP2)

ASAP2 Direct

Full vSwitch offload

ASAP2 Flex

vSwitch acceleration

ASAP2 Flex

VNF/VM acceleration

© 2016 Mellanox Technologies 3

Concept

Every switch (virtual or physical) has a notion of “packet processing pipeline”
• (Push/pop vlan, Tunnel Encap/decap operations, QoS related functionality: (Metering, Shaping, Marking,

Scheduling), Switching action)

 Typical ingress pipeline of a virtual switch can be:

ASAP2-Flex is a framework to offload part of the packet processing – one or more

pipeline stages, onto the NIC HW engines

 The “last” two actions in the pipeline, the switching decision and Tx operation are

left to the SW based dataplane of the virtual switch (e.g. OVS datapath module or

OVS-DPDK etc.)

 This will allow VMs to use Paravirt interfaces as the actual switching decision is

done in the SW and the virtual switch dataplane is NOT bypassed (just accelerated)

Classify Decapsulate QoS Switch Decision TX

© 2016 Mellanox Technologies 4

Concept (Cont)

Each offloaded pipeline stage can result in one of the following

• Packet format change (e.g. decapsulated packet)

• Some decision about the packet forwarding behavior, embedded in Metadata that will be

passed on to the virtual switch dataplene in the SW

- E.g. the Classification stage will result with a FLOW_ID that will be carried on with the packet to the SW

dataplane

 The SW based forwarding plane can leverage on the Offloading scheme:

• It can use the Metadata “hints” from the HW to accelerate its operation

- E.g. classification via X-tuple (be it 5 or 12) in HW, notify SW dataplane on classification

result

- The SW dataplane can now classify on the FLOW_ID provided in the metadata instead of the

more complex X-tuple classification

• If the HW decapsulation was used, the SW need not perform the actual decap action

• QoS can be enforced by the HW (shaping, rate limiting, packet scheduling to achieve

bandwidth guarantee etc.)

© 2016 Mellanox Technologies 5

ConnectX-4 Classification & Actions

 Classification based on

• L2 : S/D-MAC ,Ethertype, VLAN’s

• L3 : IPv4/IPv6 s/d IP Protocol / Next header …

• L4 : S/D Port flags

• Tunneling : vxlan VNI …

• Inner packet L2/L3/L4

• Different mask per flow

 Action

• drop

• Allow

• flow id assignment

• count

• forward to ring

• encap/decap tunnel

© 2016 Mellanox Technologies 6

Packets flow

PMD

NIC
Hardware

User

OVS-vswitchD

DP_IF - DPDK

classify Action

Config flow

Current openVswitch over DPDK

 PMD receive the packets

 RSS to cores

 DP-IF classify the packets

 Action forward to VF

© 2016 Mellanox Technologies 7

Packets flow

PMD

NIC
Hardware

User

OVS DataPath

OVS-vswitchD

F_DIR

Flow X mark with id

0x1234
mbuf->fdir.id 0x1234 Do

OVS action Y

DP_IF - DPDK

Config flow

openVswitch using HW classification

 For every OVS flow DP-if should use the DPDK

filter to classify with Action tag (report id) or drop.

 When receive use the tag id instead of classify the

packet

 for Example :

• OVS set action Y to flow X

- Add a flow to tag with id 0x1234 for flow X

- Config datapath to do action Y for mbuf->fdir.id = 0x1234

• OVS action drop for flow Z

- Use DPDK filter to drop and count flow Z

- Use DPDK filter to get flow statistic

© 2016 Mellanox Technologies 8

What missing for OVS in Current Flow filters

All current flow filters are either “fixed” or “RAW”

• E.g. the ntuple filter is limited.

• E.g. the flex looks at X first packet bytes as a bytestream and compares (hence if there’s VLAN

the Flow spec will be different then if there isn’t, even if the interesting field for classification is

IP…)

No filter support 12 tuple

No counter per flow , required for droop.

© 2016 Mellanox Technologies 9

New Generic flow interface - RTE_ETH_FILTER_GENERIC

Requirements for a new API:

• Flexible and extensible without causing API/ABI problems for existing applications.

• Should be unambiguous and easy to use.

• Support existing filtering features and actions listed in Filter types.

• Support packet alteration.

• In case of overlapping filters, their priority should be well documented.

• Support filter queries (for example to retrieve counters).

• Support egress (TX) matching and specific actions.

Concept:

• Define Flow spec fields as a TLV

• Define list of Actions for a matched Packet (as a TLV)

- Flow_tag, Drop, count etc…

 For more info: https://rawgit.com/6WIND/rte_flow/master/rte_flow.pdf

https://rawgit.com/6WIND/rte_flow/master/rte_flow.pdf

© 2016 Mellanox Technologies 10

More Complex Use Cases: Nested Virtual Switch Offload

 Multiple VMs, each running multiple containers

 Container connected via PV, VMs are

connected with VF (SRIOV)

• ASAP2-Direct (SRIOV)

- for switching packets directly to the VMs

• ASAP2-Flex (DPDK)

- within each VM to accelerate the “inner” virtual switch

eSwitch

Physical Port

VM_1

Container Container Container

Virtual Switch
…..

VM_n

Container Container Container

Virtual Switch

Logical Topology

VF 1 VF 2

© 2016 Mellanox Technologies 11

Thank You

