
Flow Bifurcation on Intel®
Ethernet Controller
X710/XL710

Jingjing Wu; Anjali Singhai

DPDK Summit Userspace - Dublin- 2016

Agenda

Background -- DPDK co-work with Kernel stack

 Flow bifurcation on Intel® Ethernet Controller
X710/XL710

 Summary

Kernel Bridging vs. L2Fwd

Port 0 Port 1

User

pkt generator pkt generator

DPDK PMD

L2Fwd

Kernel
igb_uio

Kernel

ixgbe

pkt generator pkt generator

Bridge

TCP/IP Stack

Port 0 Port 1

kernel bridge throughput is much

worse than DPDK L2fwd when

processing small packets even the

stack doesn't scale.

kernel bridge with 1

core

kernel bridge with 8

core

DPDK l2fwd with 1

core

m
a

x
 r

a
te

Throughput

DPDK co-work with Kernel stack

• DPDK is known to build the high performing data plane workload.

• A real world packet processing workload often relies heavily on the Linux kernel
and its large stack for the control plane design and implementation. As a known
limit, Linux performance is not sufficient for high speed data plane workloads.

• DPDK PMD or kernel driver take over the whole network card, not allowing any
traffic on that NIC to reach each other.

• In order to combine the advantages of both, few key technical components are
used to achieve the interworking between DPDK and Linux.

• Exception path: TAP, KNI, AF_Packet

• A high speed data traffic direction into Linux Kernel and DPDK -- Flow Bifurcation.

Data traffic direction – queue split

Kernel space

User space

Legacy

Network App.

Socket Lib

TCP/IP Stack

NIC Kernel

Driver

DPDK

Lib and App.

DPDK PMD

UIO

Framework

UIO Driver

R

X

R

X

R

X

R

X

R

X

R

X

R

X

R

X

R

X

R

X

Queue split

…

S
lo

w
 P

a
th

F
a

st
 P

a
th

R

X

R

X

NIC
Ingress Traffic

Flow Bifurcation

• SRIOV Based

• Queue split

• Hardware’s Packet classification
filtering capability

• kernel driver + DPDK

• Flow director in Intel 82599

• Cloud filter in Intel® X710/XL710

Packet classification filtering on X710/XL710

 To VSI

 Internal switch filters

 To Queue

 Ethertype Queue filter

 Flow director filter

 MAC/VLAN Queue filter

 Hash(RSS) filter

Internal Switch - VEB on X710/XL710

 Virtual Ethernet Bridge with
Cloud Support (Cloud VEB)

 Cloud VEB Switching Rules

 Priority 1 filters

 Priority 2 filters

 Priority 3 filters

Disallow LOOPBACK:

this port won’t be

allowed to send

packets to other virtual

ports

define which egress ports

(VSIs and LAN) will

receive a packet

received by the VEB.

VEB

 Priority 1 filters ():

 {Ethertype}

 {MAC, Ethertype}

 Priority 2 filters (Cloud Filters):

 {Inner MAC, Inner VLAN}

 {Inner MAC, Inner VLAN, Tenant ID}

 {Inner MAC, Tenant ID}

 {Inner MAC}

 {Outer MAC, Tenant ID, Inner MAC}

 {Inner IP}

 {Inner Source IP, inner destination MAC}

 Priority 3 filters:

 {MAC, VLAN}

 {MAC}

 {VLAN}

L2 filters: traditional filtering by mac address and

VLAN, programmed when mac address or VLAN

assigned to device

Cloud filters: used for flow Bifurcation, can be

programmed through ethtool

Control filters: filtering control Frame

Classification configure -- Ethtool

 I40e driver programs classification rule configured by Flow Director
typically. But Flow director in i40e filters packets in scope of VSI.

Adapt to Ethtool classification

 If the upper 32 bits of ‘user-def’ are 0xffffffff, then the filter can be used for
programming an L3 VEB filter, otherwise the upper 32 bits of ‘user-def’ can
carry the tenant ID/VNI if specified/required.

 Cloud filters can be defined with inner mac, outer mac, inner ip, inner vlan and
VNI as part of the cloud tuple. It is always the destination (not source) mac/ip
that these filters use. For all these examples dst and src mac address fields are
overloaded dst == outer, src == inner.

 The filter will direct a packet matching the rule to a vf specified in the lower 32
bits of user-def to the queue specified by ‘action’.

 If the vf id specified by the lower 32 bits of user-def is greater than or equal to
max_vfs, then the filter is for the PF queues.

Procedure

Create Virtual Functions:

echo 2 > /sys/bus/pci/devices/0000:01:00.0/sriov_numvfs

Add udp port offload to the NIC if using cloud filter:

ip li add vxlan0 type vxlan id 1 group 239.1.1.1 local 127.0.0.1 dev <name>

ifconfig vxlan0 up

Enable and setup rules

- Route whose destination IP is 192.168.50.108 to VF 0’s queue 0:

ethtool -N <dev_name> flow-type ip4 dst-ip 192.168.50.108 user-def 0xffffffff00000000 action 0 loc 0

- Route whose inner destination mac is 0:0:0:0:9:0 and VNI is 8 to PF’s queue 1:

ethtool -N <dev_name> flow-type ether dst 00:00:00:00:00:00 m ff:ff:ff:ff:ff:ff \

src 00:00:00:00:09:00 m 00:00:00:00:00:00 user-def 0x800000003 action 1 loc 1

- ……

start DPDK application without interrupt net device

testpmd -c 0xff -n 4 -- -i -w 01:10.0 -w 01:10.1 --forward-mode=mac

Performance Measurement

 Platform

 Kernel version:4.5.5-300.fc24.x86_64

 I40e driver: 1.5.23

 Firmware-version: 5.04

 DPDK：16.07

 Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

 Intel® Ethernet Controller XL710 for 40GbE QSFP+ (PCIe Gen 3 x 8)

 Mixed traffic flows

 flow_1: IP packets with destination IP address is 192.168.50.109  kernel bridge

 flow_2: IP packets with destination IP address is 192.168.50.108  DPDK l2fwd

Performance Measurement

Mixed traffic Flow1 vs flow 2

Profile_1 100% vs 0

Profile_2 10% vs 90%

Profile_3 2% vs 98%

Profile_4 0 vs 100%

Summary

 Advantages

 Support control interface, such as ethtool on PF.

 Flows are split on HW. Without overload, DPDK application’s performance can keep
stable.

 Only need kernel driver to enable filters, no DPDK changes are required, and no out-of-
tree module is required.

 Security protected by SRIOV and IOMMU.

 Disadvantages

 Depends on Hardware’s Packet classification filtering capability. Different NIC has limited
filtering capability. Not flexible as SW filtering.

 Is not absolute queue split, depends on PF driver’s supporting.

Questions?
Jingjing Wu

jingjing.wu@intel.com

