
Flow Bifurcation on Intel®
Ethernet Controller
X710/XL710

Jingjing Wu; Anjali Singhai

DPDK Summit Userspace - Dublin- 2016

Agenda

Background -- DPDK co-work with Kernel stack

 Flow bifurcation on Intel® Ethernet Controller
X710/XL710

 Summary

Kernel Bridging vs. L2Fwd

Port 0 Port 1

User

pkt generator pkt generator

DPDK PMD

L2Fwd

Kernel
igb_uio

Kernel

ixgbe

pkt generator pkt generator

Bridge

TCP/IP Stack

Port 0 Port 1

kernel bridge throughput is much

worse than DPDK L2fwd when

processing small packets even the

stack doesn't scale.

kernel bridge with 1

core

kernel bridge with 8

core

DPDK l2fwd with 1

core

m
a

x
 r

a
te

Throughput

DPDK co-work with Kernel stack

• DPDK is known to build the high performing data plane workload.

• A real world packet processing workload often relies heavily on the Linux kernel
and its large stack for the control plane design and implementation. As a known
limit, Linux performance is not sufficient for high speed data plane workloads.

• DPDK PMD or kernel driver take over the whole network card, not allowing any
traffic on that NIC to reach each other.

• In order to combine the advantages of both, few key technical components are
used to achieve the interworking between DPDK and Linux.

• Exception path: TAP, KNI, AF_Packet

• A high speed data traffic direction into Linux Kernel and DPDK -- Flow Bifurcation.

Data traffic direction – queue split

Kernel space

User space

Legacy

Network App.

Socket Lib

TCP/IP Stack

NIC Kernel

Driver

DPDK

Lib and App.

DPDK PMD

UIO

Framework

UIO Driver

R

X

R

X

R

X

R

X

R

X

R

X

R

X

R

X

R

X

R

X

Queue split

…

S
lo

w
 P

a
th

F
a

st
 P

a
th

R

X

R

X

NIC
Ingress Traffic

Flow Bifurcation

• SRIOV Based

• Queue split

• Hardware’s Packet classification
filtering capability

• kernel driver + DPDK

• Flow director in Intel 82599

• Cloud filter in Intel® X710/XL710

Packet classification filtering on X710/XL710

 To VSI

 Internal switch filters

 To Queue

 Ethertype Queue filter

 Flow director filter

 MAC/VLAN Queue filter

 Hash(RSS) filter

Internal Switch - VEB on X710/XL710

 Virtual Ethernet Bridge with
Cloud Support (Cloud VEB)

 Cloud VEB Switching Rules

 Priority 1 filters

 Priority 2 filters

 Priority 3 filters

Disallow LOOPBACK:

this port won’t be

allowed to send

packets to other virtual

ports

define which egress ports

(VSIs and LAN) will

receive a packet

received by the VEB.

VEB

 Priority 1 filters ():

 {Ethertype}

 {MAC, Ethertype}

 Priority 2 filters (Cloud Filters):

 {Inner MAC, Inner VLAN}

 {Inner MAC, Inner VLAN, Tenant ID}

 {Inner MAC, Tenant ID}

 {Inner MAC}

 {Outer MAC, Tenant ID, Inner MAC}

 {Inner IP}

 {Inner Source IP, inner destination MAC}

 Priority 3 filters:

 {MAC, VLAN}

 {MAC}

 {VLAN}

L2 filters: traditional filtering by mac address and

VLAN, programmed when mac address or VLAN

assigned to device

Cloud filters: used for flow Bifurcation, can be

programmed through ethtool

Control filters: filtering control Frame

Classification configure -- Ethtool

 I40e driver programs classification rule configured by Flow Director
typically. But Flow director in i40e filters packets in scope of VSI.

Adapt to Ethtool classification

 If the upper 32 bits of ‘user-def’ are 0xffffffff, then the filter can be used for
programming an L3 VEB filter, otherwise the upper 32 bits of ‘user-def’ can
carry the tenant ID/VNI if specified/required.

 Cloud filters can be defined with inner mac, outer mac, inner ip, inner vlan and
VNI as part of the cloud tuple. It is always the destination (not source) mac/ip
that these filters use. For all these examples dst and src mac address fields are
overloaded dst == outer, src == inner.

 The filter will direct a packet matching the rule to a vf specified in the lower 32
bits of user-def to the queue specified by ‘action’.

 If the vf id specified by the lower 32 bits of user-def is greater than or equal to
max_vfs, then the filter is for the PF queues.

Procedure

Create Virtual Functions:

echo 2 > /sys/bus/pci/devices/0000:01:00.0/sriov_numvfs

Add udp port offload to the NIC if using cloud filter:

ip li add vxlan0 type vxlan id 1 group 239.1.1.1 local 127.0.0.1 dev <name>

ifconfig vxlan0 up

Enable and setup rules

- Route whose destination IP is 192.168.50.108 to VF 0’s queue 0:

ethtool -N <dev_name> flow-type ip4 dst-ip 192.168.50.108 user-def 0xffffffff00000000 action 0 loc 0

- Route whose inner destination mac is 0:0:0:0:9:0 and VNI is 8 to PF’s queue 1:

ethtool -N <dev_name> flow-type ether dst 00:00:00:00:00:00 m ff:ff:ff:ff:ff:ff \

src 00:00:00:00:09:00 m 00:00:00:00:00:00 user-def 0x800000003 action 1 loc 1

- ……

start DPDK application without interrupt net device

testpmd -c 0xff -n 4 -- -i -w 01:10.0 -w 01:10.1 --forward-mode=mac

Performance Measurement

 Platform

 Kernel version:4.5.5-300.fc24.x86_64

 I40e driver: 1.5.23

 Firmware-version: 5.04

 DPDK：16.07

 Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

 Intel® Ethernet Controller XL710 for 40GbE QSFP+ (PCIe Gen 3 x 8)

 Mixed traffic flows

 flow_1: IP packets with destination IP address is 192.168.50.109 kernel bridge

 flow_2: IP packets with destination IP address is 192.168.50.108 DPDK l2fwd

Performance Measurement

Mixed traffic Flow1 vs flow 2

Profile_1 100% vs 0

Profile_2 10% vs 90%

Profile_3 2% vs 98%

Profile_4 0 vs 100%

Summary

 Advantages

 Support control interface, such as ethtool on PF.

 Flows are split on HW. Without overload, DPDK application’s performance can keep
stable.

 Only need kernel driver to enable filters, no DPDK changes are required, and no out-of-
tree module is required.

 Security protected by SRIOV and IOMMU.

 Disadvantages

 Depends on Hardware’s Packet classification filtering capability. Different NIC has limited
filtering capability. Not flexible as SW filtering.

 Is not absolute queue split, depends on PF driver’s supporting.

Questions?
Jingjing Wu

jingjing.wu@intel.com

