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DPDK co-work with Kernel stack

- DPDK is known to build the high performing data plane workload.

- Areal world packet processing workload often relies heavily on the Linux kernel
and its large stack for the control plane design and implementation. As a known
limit, Linux performance is not sufficient for high speed data plane workloads.

- DPDK PMD or kernel driver take over the whole network card, not allowing any
traffic on that NIC to reach each other.

- In order to combine the advantages of both, few key technical components are
used to achieve the interworking between DPDK and Linux.

Exception path: TAP, KNI, AF_Packet
A high speed data traffic direction into Linux Kernel and DPDK -- Flow Bifurcation.



Data traffic direction — queue split
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Flow Bifurcation
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Packet classification filtering on X710/XL710

» To VSI

> Internal switch filters

» To Queue

> Ethertype Queue filter
> Flow director filter

> MAC/VLAN Queue filter
> Hash(RSS) filter

N

Internal Switch — Filtering to VSI
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Internal Switch - VEB on X710/XL710

» Virtual Ethernet Bridge with
Cloud Support (Cloud VEB)

» Cloud VEB Switching Rules
» Priority 1 filters
» Priority 2 filters
» Priority 3 filters
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VEB

»  Priority 1 filters ():

» {Ethertype} Control filters: filtering control Frame
» {MAC, Ethertype}

priority 2 filters (Cloud Filters):
{Inner MAC, Inner VLAN}
{Inner MAC, Inner VLAN, Tenant ID} Cloud filters: used for flow Bifurcation, can be
{Inner MAC, Tenant ID} programmed through ethtool

{Inner MAC}

{Outer MAC, Tenant ID, Inner MAC}
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{Inner IP}
{Inner Source IP, inner destjneton MAC}
»  Priority 3 filters:

» {MAC, VLAN}

L2 filters: traditional filtering by mac address and

» {MAC} VLAN, programmed when mac address or VLAN
assigned to device

» {VLAN}



Classification configure -- Ethtool

ethtool -N|-U|--config-nfc|-—-config-ntuple DEVHAME Configure Ex network flow classification options or rules

rx-flow-hash tcp4|udp4|ah4d|e=sp4|=ctpd|tcpe|udpe|ahe|espe|sctpe m|v|c|s|d|fin|...
flow-type ether|ipd|tcp4d|udp4d|sctp4d|ahd|espd

[ sro $x:E3xiE3XIEXIERIEN [m FE-EFRIFERIEERIEERIER] O]

[ dest FIX:FIX:FIX:FIX:3X:3X [m I FX:FX:FXH:FR:EX] ]

[ proto %d [m 3x] ]

[ erc-ip 3d.3d.3d.3d [m 3Fd.3d.3d.3Fd] ]

[ det-ip 3d.3d.3d.3d [m %Fd.3d.3%d.3%d] ]

[ tos 3d [m 3x] ]

[ 14proto 3d [m 3=x] ]

[ src-port 3d [m 3x] ]

[ dst-port 3d [m *¥x] ]

[ 2pi 3d [m 3x] ]

[ vlan-etype *¥x [m ¥x] ]

[ vlan *x [m *x] ]

[ user—-def 3Ix [m 3Ix] ]

[ det-mac Fx:FEX3x 33X [m IMoFEodxoFHIExIEx] ]

[ action %d ]

[ loc 3d]]

» 140e driver programs classification rule configured by Flow Director
typically. But Flow director in i40e filters packets in scope of VSI.




Adapt to Ethtool classification

» If the upper 32 bits of ‘user-def’ are Oxffffffff, then the filter can be used for
programming an L3 VEB filter, otherwise the upper 32 bits of ‘user-def’ can
carry the tenant ID/VNI if specified/required.

» Cloud filters can be defined with inner mac, outer mac, inner ip, inner vlan and
VNI as part of the cloud tuple. It is always the destination (not source) mac/ip
that these filters use. For all these examples dst and src mac address fields are
overloaded dst == outer, src == inner.

» The filter will direct a packet matching the rule to a vf specified in the lower 32
bits of user-def to the queue specified by ‘action’.

» If the vfid specified by the lower 32 bits of user-def is greater than or equal to
max_vfs, then the filter is for the PF queues.



Procedure

# Create Virtual Functions:
echo 2 > /sys/bus/pci/devices/0000:01:00.0/sriov_numvfs

# Add udp port offload to the NIC if using cloud filter:
ip i add vxlanO type vxlanid 1 group 239.1.1.1 local 127.0.0.1 dev <name>

ifconfig vxlanO up

# Enable and setup rules
- Route whose destination IP is 192.168.50.108 to VF 0's queue 0O:
ethtool -N <dev_name> flow-type ip4 dst-ip 192.168.50.108 user-def Oxffffffff00000000 action 0 loc O

- Route whose inner destination mac is 0:0:0:0:9:0 and VNI is 8 to PF's queue 1:
ethtool -N <dev_name> flow-type ether dst 00:00:00:00:00:00 m ff:ff:ff:ff:ff:ff \
src 00:00:00:00:09:00 m 00:00:00:00:00:00 user-def 0x800000003 action 1 loc 1

# start DPDK application without interrupt net device
testomd -c Oxff -n 4 ---i-w 01:10.0 -w 01:10.1 --forward-mode=mac



Performance Measurement

» Platform
> Kernel version:4.5.5-300.fc24.x86_64
|40e driver: 1.5.23
Firmware-version: 5.04
DPDK: 16.07
Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz
Intel® Ethernet Controller XL710 for 40GbE QSFP+ (PCle Gen 3 x 8)

» Mixed traffic flows

> flow_1:IP packets with destination IP address is 192.168.50.109 - kernel bridge
> flow_2: IP packets with destination IP address is 192.168.50.108 - DPDK I2fwd
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Performance Measurement

Flow bifurcation performance Measurement

Profile_1 100% vs O
Profile_2 10% vs 90%
Profile_3 2% Vs 98%
Profile_4 0 vs 100%
Ay
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Summary

» Advantages
> Support control interface, such as ethtool on PF.

> Flows are split on HW. Without overload, DPDK application’s performance can keep
stable.

> Only need kernel driver to enable filters, no DPDK changes are required, and no out-of-
tree module is required.

> Security protected by SRIOV and IOMMU.
» Disadvantages

> Depends on Hardware’s Packet classification filtering capability. Different NIC has limited
filtering capability. Not flexible as SW filtering.

> |Is not absolute queue split, depends on PF driver’s supporting.
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