DPDK

Flow Bifurcation on Intel®
Ethernet Controller

X710/XL710

Agenda DPDK

» Background -- DPDK co-work with Kernel stack

» Flow bifurcation on Intel® Ethernet Controller
X710/XL710

» Summary

Kernel Bridging vs. L2Fwd

Kernel User

TCP/IP Stack
DPDK PMD

rcrr soc_
— Bridge
oo Kernel

xI Xl Xl x|

L‘.—— - L‘.—— -
- -

¢ ¢ ¢ ¢

pkt generator pkt generator pkt generator pkt generator

max rate

kernel bridge throughput is much
worse than DPDK L2fwd when
processing small packets even the
stack doesn't scale.

Throughput

kernel bridge with 1 kernel bridge with 8 DPDK 12fwd with 1
core core core

DPDK co-work with Kernel stack

- DPDK is known to build the high performing data plane workload.

- Areal world packet processing workload often relies heavily on the Linux kernel
and its large stack for the control plane design and implementation. As a known
limit, Linux performance is not sufficient for high speed data plane workloads.

- DPDK PMD or kernel driver take over the whole network card, not allowing any
traffic on that NIC to reach each other.

- In order to combine the advantages of both, few key technical components are
used to achieve the interworking between DPDK and Linux.

Exception path: TAP, KNI, AF_Packet
A high speed data traffic direction into Linux Kernel and DPDK -- Flow Bifurcation.

Data traffic direction — queue split

4 Legacy DPDK =
Network App. Lib and App.
User space

Kernel space UIO
= TCP/IP Stack =
o) Framework O
0. 0.
2 NIC Kernel -
o NEINE UIO Driver O
17, Driver

A
i+

Ingresszraffic

Flow Bifurcation

- SRIOV Based { Socket J [DPDK J
- Queue split 4 A

) . 4 N
- Hardware’s Packet classification [Tm,smmgm] Linux

filtering capability f'“:“‘
- kernel driver + DPDK " Gy e e [el rpr
. Flow director in Intel 82599 \ 7 J
. Cloud filter in Intel® X710/XL710 ““:.3‘.':‘;“’\ /"’lm':“
PF VF(vfo)

d ~—— — i
fil

NI

Packet classification filtering on X710/XL710

» To VSI

> Internal switch filters

» To Queue

> Ethertype Queue filter
> Flow director filter

> MAC/VLAN Queue filter
> Hash(RSS) filter

N

Internal Switch — Filtering to VSI

MAC/VLAN ; Ethertype ; MNG Filters

EMP YSI's

\

Control Port / L2 DJI";_
Protocol OueuesmI .
PR

Queue defined
by Ethertype
Filter

Yes

FCOE State- mI";_

full offload I:I:II"_

FCoE Context
Queue

it Ethertype
Queue Filter

Hit FCo @
Context Filter &
Rules

Host VSl's

@

@

No

No

it Flow Direcio
Filter

Queue defined
by Flow
Director Filter

s

—

Queue defined

—> 111l

by MAC/ALAN | -

Filter

—111]

Queue defined| -

by Hash Filter | -

Default Rx Queue:
Queue 0" of the VSI

Flex Queue

VMDq1
Queues

Load
Balance
Queues

Internal Switch - VEB on X710/XL710

» Virtual Ethernet Bridge with
Cloud Support (Cloud VEB)

» Cloud VEB Switching Rules
» Priority 1 filters
» Priority 2 filters
» Priority 3 filters

VMg VM, VM,
— Switch Control Plane
WMM \
\
\ pFu \‘IIFD II“II Fl
Virtual embeddé!\bﬁdge

PP Fartville

P

define which egress ports
(VSIs and LAN) will
receive a packet

received by the VEB.

T

Disallow LOOPBACK:
this port won't be
allowed to send
packets to other virtual
ports

VEB

» Priority 1 filters ():

» {Ethertype} Control filters: filtering control Frame
» {MAC, Ethertype}

priority 2 filters (Cloud Filters):
{Inner MAC, Inner VLAN}
{Inner MAC, Inner VLAN, Tenant ID} Cloud filters: used for flow Bifurcation, can be
{Inner MAC, Tenant ID} programmed through ethtool

{Inner MAC}

{Outer MAC, Tenant ID, Inner MAC}

vV v v v v Vv

{Inner IP}
{Inner Source IP, inner destjneton MAC}
» Priority 3 filters:

» {MAC, VLAN}

L2 filters: traditional filtering by mac address and

» {MAC} VLAN, programmed when mac address or VLAN
assigned to device

» {VLAN}

Classification configure -- Ethtool

ethtool -N|-U|--config-nfc|-—-config-ntuple DEVHAME Configure Ex network flow classification options or rules

rx-flow-hash tcp4|udp4|ah4d|e=sp4|=ctpd|tcpe|udpe|ahe|espe|sctpe m|v|c|s|d|fin|...
flow-type ether|ipd|tcp4d|udp4d|sctp4d|ahd|espd

[sro $x:E3xiE3XIEXIERIEN [m FE-EFRIFERIEERIEERIER] O]

[dest FIX:FIX:FIX:FIX:3X:3X [m I FX:FX:FXH:FR:EX]]

[proto %d [m 3x]]

[erc-ip 3d.3d.3d.3d [m 3Fd.3d.3d.3Fd]]

[det-ip 3d.3d.3d.3d [m %Fd.3d.3%d.3%d]]

[tos 3d [m 3x]]

[14proto 3d [m 3=x]]

[src-port 3d [m 3x]]

[dst-port 3d [m *¥x]]

[2pi 3d [m 3x]]

[vlan-etype *¥x [m ¥x]]

[vlan *x [m *x]]

[user—-def 3Ix [m 3Ix]]

[det-mac Fx:FEX3x 33X [m IMoFEodxoFHIExIEx]]

[action %d]

[loc 3d]]

» 140e driver programs classification rule configured by Flow Director
typically. But Flow director in i40e filters packets in scope of VSI.

Adapt to Ethtool classification

» If the upper 32 bits of ‘user-def’ are Oxffffffff, then the filter can be used for
programming an L3 VEB filter, otherwise the upper 32 bits of ‘user-def’ can
carry the tenant ID/VNI if specified/required.

» Cloud filters can be defined with inner mac, outer mac, inner ip, inner vlan and
VNI as part of the cloud tuple. It is always the destination (not source) mac/ip
that these filters use. For all these examples dst and src mac address fields are
overloaded dst == outer, src == inner.

» The filter will direct a packet matching the rule to a vf specified in the lower 32
bits of user-def to the queue specified by ‘action’.

» If the vfid specified by the lower 32 bits of user-def is greater than or equal to
max_vfs, then the filter is for the PF queues.

Procedure

Create Virtual Functions:
echo 2 > /sys/bus/pci/devices/0000:01:00.0/sriov_numvfs

Add udp port offload to the NIC if using cloud filter:
ip i add vxlanO type vxlanid 1 group 239.1.1.1 local 127.0.0.1 dev <name>

ifconfig vxlanO up

Enable and setup rules
- Route whose destination IP is 192.168.50.108 to VF 0's queue 0O:
ethtool -N <dev_name> flow-type ip4 dst-ip 192.168.50.108 user-def Oxffffffff00000000 action 0 loc O

- Route whose inner destination mac is 0:0:0:0:9:0 and VNI is 8 to PF's queue 1:
ethtool -N <dev_name> flow-type ether dst 00:00:00:00:00:00 m ff:ff:ff:ff:ff:ff \
src 00:00:00:00:09:00 m 00:00:00:00:00:00 user-def 0x800000003 action 1 loc 1

start DPDK application without interrupt net device
testomd -c Oxff -n 4 ---i-w 01:10.0 -w 01:10.1 --forward-mode=mac

Performance Measurement

» Platform
> Kernel version:4.5.5-300.fc24.x86_64
|40e driver: 1.5.23
Firmware-version: 5.04
DPDK: 16.07
Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz
Intel® Ethernet Controller XL710 for 40GbE QSFP+ (PCle Gen 3 x 8)

» Mixed traffic flows

> flow_1:IP packets with destination IP address is 192.168.50.109 - kernel bridge
> flow_2: IP packets with destination IP address is 192.168.50.108 - DPDK I2fwd

YV V V V V

Performance Measurement

Flow bifurcation performance Measurement

Profile_1 100% vs O
Profile_2 10% vs 90%
Profile_3 2% Vs 98%
Profile_4 0 vs 100%
Ay

profile_1 profile_2 profile_3 profile_4

max rate

W Kernel bridge m DPDK [2fwd

Summary

» Advantages
> Support control interface, such as ethtool on PF.

> Flows are split on HW. Without overload, DPDK application’s performance can keep
stable.

> Only need kernel driver to enable filters, no DPDK changes are required, and no out-of-
tree module is required.

> Security protected by SRIOV and IOMMU.
» Disadvantages

> Depends on Hardware’s Packet classification filtering capability. Different NIC has limited
filtering capability. Not flexible as SW filtering.

> |Is not absolute queue split, depends on PF driver’s supporting.

Jingjing Wu

Questions?

jingjing.wu@intel.com

