
PUBLIC USE

SHREYANSH JAIN, HEMANT AGRAWAL

NXP

21/OCT/2016

RESTRUCTURING DPDK DEVICE-DRIVER FRAMEWORK
Expanding DPDK to non-PCI, non-virtual devices



PUBLIC USE2

About Me...

• An engineer with NXP’s Digital Networking Software team

− Leveraging NXP’s hardware accelerators using Open-source datapath frameworks: 

DPDK, ODP

− New to DPDK community (May’16)

• Reach out @

 shreyansh.jain@nxp.com

 IRC: #DPDK (nick: shreyansh.)

mailto:shreyansh.jain@nxp.com
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Agenda: Next ~30 minutes

• Introducing NXP SoC

− NXP DPAA: Datapath Acceleration Architecture

− SoC and Standardization - incongruous

• Integrating NXP PMD with DPDK: Stumbling block(s)

− Solution(s) and what needs to be done for it

− Allowing Custom Scanning for devices

− Or, introducing a new Device Model: Bus  Device  Driver

• Summarizing the status

• Questions/Comments
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DPDK on NXP SoCs

Main Goal is to add NXP SoC support in DPDK

• DPDK 16.07 supports NXP platform 

configuration (without NXP PMDs)

 defconfig_arm64-dpaa2-linuxapp-gcc

• NXP Networking SoC:

− Have in-built MAC and they are non-PCI based

− Have in-built accelerators to support packet 

processing

• BMAN - Packet buffer to be allocated & managed by HW

• QMAN - Packet Queues mapped to hardware queues

• CAAM – Crypto accelerator offload
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Datapath Acceleration

• SEC- Crypto acceleration

• DCE - Data Compression Engine

• PME – Pattern Matching Engine

• L2 Switching -- via Datapath Acceleration Hardware

• Management Complex – Abstraction of configuration of HW

General Purpose Processing 

• 8x 64-bit ARMv8 A72 CPUs up to 2.0GHz

• 1MB L2 cache in each 2xA72 core cluster

• HW L1 & L2 Prefetch Engines

• Neon SIMD in all CPUs

• 1MB L3 platform cache

• 2x64b DDR4 up to 2.133GT/s

Accelerated Packet Processing  

• 20Gbps SEC-Crypto acceleration

• 10Gbps Pattern Match/RegEx

• 20Gbps Data Compression Engine

High Speed IO 

• Supports1x8, 4x4, 4x2, 4x1 PCIe Gen3 controllers

• SR-IOV, End Point, Root Complex

• 2 x SATA 3.0, 2 x USB 3.0 with PHY

Network IO

• Wire Rate IO Processor:

• 8x1/10GbE + 8x1G

• XAUI/XFI/KR and SGMII/QSGMII

• MACSec on up to 4x 1/10GbE

• Layer 2 Switch Assist

NXP DPAA2 Architecture (1/3)
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NXP DPAA2 Architecture (2/3)
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NXP DPAA2 Architecture (3/3)
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SoCs are not necessarily standardized

A typical networking SoC contains one or more MAC within the chip  

• Different ways to connect the peripherals (or MAC):

− Platform Bus e.g. NXP DPAA (LS1043)

− PCI Bus e.g. Cavium ThunderX

− Or any other proprietary bus e.g.  NXP DPAA2 (fsl-mc bus for LS2088)

• SoCs do not have an standard definition of bus like PCI

− Even assuming a platform bus is not right

− Non-standardized way of realizing the devices in user-space (or kernel)
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NXP PMD over DPDK: Integration stumbling block

• Inherently a PCI inclined architecture

− DPDK was designed around PCI devices; there are traces of this across framework

 rte_eth_dev has rte_pci_device as a member

 eth_driver has rte_pci_driver as a member

• All Ethernet devices are not PCI

• Adding support for more bus type possible, but breaks the ABI everytime

− EAL initialization scans the PCI bus (and VDEV) only

 Assumes that all devices are discoverable from sysfs

 It is possible to include more ‘standard’ scan functions (Platform, AMBA…)

 But, ideal would be to have a pluggable model – let Drivers (or bus) perform the scan
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Source: DPDK SF Summit 2015:  “Future Enhancements to DPDK 

Framework” by Keith Wiles, Principal Engineer, Intel Corporation 

There have been proposals to fix this… (1/2)
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There have been proposals to fix this… (2/2)

• First series of SoC related improvement sent on ML in Jan’16 [1]

− Introduces rte_soc_driver, rte_soc_device (and other internal structures)

• SoC registration and de-registration methods and their invocation from rte_eal_init()

• Maintaining new linked-lists for SoC devices/drivers (soc_driver_list, soc_device_list)

• Scanning of SoC devices from platform bus only

− Subsequent updates allowed for ‘default’ scan and match [2]

• PMDs can implement their own scan which is hooked on from EAL initialization

• Default implementation from first series continued as helpers

− Overall model allows for a new type of device parallel to PCI

 SoC or non-PCI?

• Next Step: There is a need for a better model

− One that is agnostic to such ‘device type’ changes in long run

[1] http://dpdk.org/ml/archives/dev/2016-January/030915.html

[2] http://dpdk.org/ml/archives/dev/2016-October/048949.html
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Recently changed (Sep’16)

Remodeling Device-Driver Relationship (1)

Existing structure

PMD Drivers

rte_driver

rte_pci_driver rte_pci_device

rte_eth_dev

dev_driver_list

pci_driver_list pci_device_list

• Virtual devices are also represented by a type 

of rte_driver (PMD_VDEV) 

• No space for non-PCI/non-virtual devices

EAL Initialization

PMD Drivers

rte_driver

rte_device

rte_vdev_driver

rte_pci_driver

rte_vdev_device

rte_pci_device

pci_device_list

vdev_device_list

pci_driver_list

vdev_driver_list

driver_list

device_list

eth_driver
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Ethernet devices are still PCI…

Remodeling Device-Driver Relationship (2)

Existing structure

PMD Drivers

rte_driver

rte_pci_driver rte_pci_device

rte_eth_dev

dev_driver_list

pci_driver_list pci_device_list

• Virtual devices are also represented by a type 

of rte_driver (PMD_VDEV) and treated as PCI 

devices

• No space for non-PCI/non-virtual devices

EAL Initialization

PMD Drivers

rte_driver

rte_device

rte_vdev_driver

rte_pci_driver

rte_vdev_device

rte_pci_device

pci_device_list

vdev_device_list

pci_driver_list

vdev_driver_list

driver_list

device_list

eth_driver

eth_driver

rte_eth_dev

rte_pci_driver rte_pci_device

Similar is the case for Crypto devices/driver
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Remodeling Device-Driver Relationship (3)

Recently changed (Sep’16)

PMD Drivers

rte_driver

rte_device

rte_vdev_driver

rte_pci_driver

rte_vdev_device

rte_pci_device

pci_device_list

vdev_device_list

pci_driver_list

vdev_driver_list

driver_list

device_list

Step 1: Introduce a XXX device/driver

PMD Drivers

rte_driver

rte_device

rte_vdev_driver

rte_pci_driver

rte_XXX_driver

rte_vdev_device

rte_pci_device

rte_XXX_device

pci_device_list

vdev_device_list

pci_driver_list

vdev_driver_list

driver_list

device_list

A unified list for each device/driver type?

SoC Patch-set introduces this model
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Remodeling Device-Driver Relationship (4)

Recently changed (Sep’16)

PMD Drivers

rte_driver

rte_device

rte_XXX_driver

rte_vdev_driver

rte_pci_driver

rte_XXX_device

rte_vdev_device

rte_pci_device

pci_device_list

vdev_device_list

pci_driver_list

vdev_driver_list

driver_list

device_list

Step 2: Ethernet device bus agnostic

PMD Drivers

rte_driver

rte_device

rte_vdev_driver

rte_pci_driver

rte_XXX_driver

rte_vdev_device

rte_pci_device

rte_XXX_device

pci_device_list

vdev_device_list

pci_driver_list

vdev_driver_list

driver_list

device_list

rte_eth_driver

rte_eth_dev

rte_driver

rte_device

How to link back to exact driver from 

ethdevice?
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Taking cue from Linux Device Model

• Bus  Devices  Drivers

 Device attaches on a bus

 Drivers services a device

• DPDK…

 rte_pci_device is attached to 

a rte_pci_bus

 rte_pci_driver services a 

rte_pci_device

• Service includes probe, remove, 

hot-plugging

 EAL init and hot-plugging calls 
rte_pci_bus->probe

• This in turn calls 
rte_pci_driver->probe
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Remodeling Device-Driver Relationship (4)

Step 3: Bus  Driver  Device

rte_driver

rte_XXX_driver rte_XXX_device

rte_driver rte_device

Step 2

PMD Drivers

rte_driver

rte_device

rte_XXX_driver

rte_vdev_driver

rte_pci_driver

rte_XXX_device

rte_vdev_device

rte_pci_device

pci_device_list

vdev_device_list

pci_driver_list

vdev_driver_list

driver_list

device_list

rte_eth_driver

rte_eth_dev

rte_driver

rte_device

rte_bus

scan

match

probe

remove

probe

remove

rte_eal_init()

`-> rte_eal_devices_init()

`-> for each bus, call its scan

`-> For each device scanned, call match

`-> For each match, call driver->probe

PMDs = Bus + Driver

`-> Register for a Bus

`-> either existing or create a new

register

unregister

List of buses

bus_type

Something similar has already been proposed on ML [1].
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Balancing long and short term goals

• Complete overhaul is a long term goal

− It requires quite a lot of deliberation

− Changes can be transparently done for PMDs, but impact (performance, ABI) is there

• Step-by-Step approach

− Bring in the pluggable scan way and allow non-PCI device to be introduced

− Once, more PMDs come in, better picture of use-cases

 For example, whether platform bus is default or not
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What else can be improved

• Updated semantics for External or Offloaded memory pool

− Applications would prefer non-platform specific implementations

− Application should be hardware offloading agnostic

 That’s a platform property

• Possible approach

− Clear semantics for Packet Mempool which can be offloaded and other mempools

 APIs should be different. For example, rte_mempool_create is only for non-packet buffers

− In case of unavailability of offloaded pool, transparent fallback to non-offloaded pool

 Use-case: NFV where applications can be deployed to heterogenous host environment

 A patch for supporting fallback is posted on ML

• Transparent fallback vs exposing API for checking support
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NXP SoC in DPDK – Status Check

• Run time services for non-IA

 Available for ARM, Power8 and other architecture

• Mempool offload framework – to use external or hardware memory managers

 Merged in 16.07

• non-PCIe devices support

 Multiple discussions and patchsets – not much progress in terms of review

 Phased approach would allow non-PCI PMDs to be introduced

 Complete overhaul is fairly long term

• Event Driven Programming model

 RFC posted by Cavium; Intel and NXP contributed in review
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QUESTIONS?


