RESTRUCTURING DPDK DEVICE-DRIVER FRAMEWORK

Expanding DPDK to non-PClI, non-virtual devices

SHREYANSH JAIN, HEMANT AGRAWAL
NXP
21/0CT/2016

x SECURE CONNECTIONS
FOR A SMARTER WORLD

PUBLIC USE

About Me...

- An engineer with NXP’s Digital Networking Software team

- Leveraging NXP’s hardware accelerators using Open-source datapath frameworks:
DPDK, ODP

-New to DPDK community (May’16)
- Reach out @

= Sshreyansh.jain@nxp.com
= IRC: #DPDK (nick: shreyansh.)

2 PUBLIC USE

h
P

mailto:shreyansh.jain@nxp.com

Agenda: Next ~30 minutes

- Introducing NXP SoC
-NXP DPAA: Datapath Acceleration Architecture
- SoC and Standardization - incongruous
- Integrating NXP PMD with DPDK: Stumbling block(s)
- Solution(s) and what needs to be done for it
- Allowing Custom Scanning for devices
- Or, introducing a new Device Model: Bus < Device < Driver

- Summarizing the status
- Questions/Comments

3 PUBLIC USE

h

P

Agenda

- Introducing NXP SoC
-NXP DPAA: Datapath Acceleration Architecture
- SoC and Standardization - incongruous
- Integrating NXP PMD with DPDK: Stumbling block(s)
- Solution(s) and what needs to be done for it
- Allowing Custom Scanning for devices
- Or, introducing a new Device Model: Bus < Device < Driver

- Summarizing the status
- Questions/Comments

4 PUBLIC USE

h

P

DPDK on NXP SoCs

Main Goal is to add NXP SoC support in DPDK
- DPDK 16.07 supports NXP platform General Purpose Cores

: : . [1
configuration (without NXP PMDs) e E— == GPP
= defconfig arm64-dpaaZ-linuxapp-gcc
- NXP Networking SoC.:
_ _ J Accelerators \ /
- Have in-built MAC and they are non-PCI based , séc .~ Infrastructure
- Have in-built accelerators to support packet o QMan Bman ‘
processing DCE /
- BMAN - Packet buffer to be allocated & managed by HW PME $
- QMAN - Packet Queues mapped to hardware queues Etc WRIOP

- CAAM — Crypto accelerator offload

DPAA2 Hardware

h
P

5 PUBLIC USE

NXP DPAA2 Architecture (1/3)

ARM ARM
A72 A72

32KB
L1-D

ARM ARM
A72 A72

48KB
L1-1

48KB
L1-1

=
273
80
o

32KB |48KB] 32KB | 48KB I 32KB
L1-D | L1-I L1-D | L1-I I L1-D

1MB Banked L2

1MB Banked L2

Secure Boot

Trust Zone Coherency Fabric

Flash Controller SMMU SMMU SMMU

Power Management

2x DUART
4x12C DCE SEC Rffar HYvancted oo o o
SPI, GPIO, JTAG Layer 2 Switch Assist |<£
<
8-Lane 10GHz 8-Lane 10GHz

Datapath Acceleration SERDES SERDES
» SEC- Crypto acceleration

* DCE - Data Compression Engine

* PME — Pattern Matching Engine

» L2 Switching -- via Datapath Acceleration Hardware

* Management Complex — Abstraction of configuration of HW

6 PUBLIC USE

SATA 3.0

General Purpose Processing

* 8x 64-bit ARMv8 A72 CPUs up to 2.0GHz
1MB L2 cache in each 2xA72 core cluster
HW L1 & L2 Prefetch Engines

Neon SIMD in all CPUs

1MB L3 platform cache

2x64b DDR4 up to 2.133GT/s

Accelerated Packet Processing

» 20Ghps SEC-Crypto acceleration

* 10Ghps Pattern Match/RegEx

* 20Gbps Data Compression Engine

High Speed IO
* Supports1x8, 4x4, 4x2, 4x1 PCle Gen3 controllers
* SR-IOV, End Point, Root Complex
* 2 X SATA 3.0, 2 x USB 3.0 with PHY
Network 10
» Wire Rate 10 Processor:
* 8x1/10GbE + 8x1G
* XAUI/XFI/KR and SGMII/QSGMII
* MACSec on up to 4x 1/10GbE
» Layer 2 Switch Assist

NXP DPAA2 Architecture (2/3)

A fully virtualized and isolated Data Path

Acceleration Subsystem.

» Kernel bypassing and zero copy with
user-space virtual addressing

* Fully isolated and security provisioning
for DPAA portal and memory accesses.

 Virtual switching allows convenient and
isolated access to acceleration offload.

K

components

MC or Management Complex provides
object abstraction for various underlying

+ It allows for a simplified interface to the
hardware accelerator blocks

Queue/
DCE SEC Buffer

Management Complex

-

o

PEB Memory

—— Mgr\

PME

WRIOP -

\Qer 2 Switch Assist

Various functional accelerator blocks

8%0-% 8x1

WRIOP for line rate Networking

/ * Intelligent distribution, queuing and drop

decisions
» Supports multiple Interface profiles
* Has an embedded L2 switch

» SEC supports bulk crypto encryption and
various protocol offload

* PME or Pattern Match Engine

* DCE or Data Compression Engine

7 PUBLIC USE

* QMAN (Queue Manager) provides
efficient, isolated, high-bandwidth packet
gueues

 BMAN or Buffer Manager allows packets
to be stored on DDR, allowing pool
segregation and lock-free access.

h

P

NXP DPAA2 Architecture (3/3)

Thread affinity to hardware
accelerator instance

/ Packet pool offloaded to

hardware

....... %b
WW@%@@@% @ Bobbbh

Hardware provided queues are
exposed to the application
through PMD

Y Y Y

®{@

\gfi?®®®®/ PEODDE
. e D

8 PUBLIC USE

SoCs are not necessarily standardized

A typical networking SoC contains one or more MAC within the chip
- Different ways to connect the peripherals (or MAC):

- Platform Bus e.g. NXP DPAA (LS1043)
-PCI Bus e.g. Cavium ThunderX
- Or any other proprietary bus e.g. NXP DPAAZ2 (fsl-mc bus for LS2088)

- S0Cs do not have an standard definition of bus like PCI

9

- Even assuming a platform bus is not right
- Non-standardized way of realizing the devices in user-space (or kernel)

PUBLIC USE

h

P

Agenda

- Introducing NXP SoC
-NXP DPAA: Datapath Acceleration Architecture
- SoC and Standardization - incongruous
- Integrating NXP PMD with DPDK: Stumbling block(s)
- Solution(s) and what needs to be done for it
- Allowing Custom Scanning for devices
- Or, introducing a new Device Model: Bus < Device & Driver

- Summarizing the status
- Questions/Comments

10 PUBLIC USE

h

P

NXP PMD over DPDK: Integration stumbling block

- Inherently a PCI inclined architecture

- DPDK was designed around PCI devices; there are traces of this across framework
rte eth devhasrte pci device as a member
eth driver has rte pci driver as a member

- All Ethernet devices are not PCI
- Adding support for more bus type possible, but breaks the ABI everytime

- EAL initialization scans the PCI bus (and VDEV) only
= Assumes that all devices are discoverable from sysfs

= |t is possible to include more ‘standard’ scan functions (Platform, AMBA...)
= But, ideal would be to have a pluggable model — let Drivers (or bus) perform the scan

h

11 PUBLIC USE

P

There have been proposals to fix this... (1/2)

SoC PMD: Poll Mode driver model for SoC devices

Provides a clean integration of SoC via a PMD in DPDK

» Hardware abstraction in DPDK is at the PMD layer

oA - DPDK-API: A generic AP| extended to support SoCs
bt I — DPDK provides a two layer device model to support many
devices at the same time/binary, which can include SoC
—— devices
: — Need to enhance DPDK with some SoC specific needs or
—— Hardware features to support SoC hardware
ke « Non-PCI configuration

manager 3 Party

« External memory manager(s) (for hardware based memory)
St SDK Supports « Event based programming model

= « SoC-PMD: Poll Mode Driver model for SoC
' — Allows SoC SDK’s to remain private

« Supports ARM and MIPS DPDK ports to utilize these
L DPDK — Architecture) SoC designs

Source: DPDK SF Summit 2015: “Future Enhancements to DPDK
Framework” by Keith Wiles, Principal Engineer, Intel Corporation M

12 PUBLIC USE

There have been proposals to fix this... (2/2)

- First series of SoC related improvement sent on ML in Jan’16 [

- Introduces rte_soc_driver, rte_soc_device (and other internal structures)
- SoC registration and de-registration methods and their invocation from rte_eal init()
- Maintaining new linked-lists for SoC devices/drivers (soc_driver_list, soc_device_list)
- Scanning of SoC devices from platform bus only
- Subsequent updates allowed for ‘default’ scan and match 2!
- PMDs can implement their own scan which is hooked on from EAL initialization
- Default implementation from first series continued as helpers
- Overall model allows for a new type of device parallel to PCI
= SO0C or non-PCI?

- Next Step: There is a need for a better model =

- One that is agnostic to such ‘device type’ changes in long run

[1] http://dpdk.org/ml/archives/dev/2016-January/030915.html
[2] http://dpdk.org/ml/archives/dev/2016-October/048949.html

13 PUBLIC USE

V4 of patch-set is under review

h
P

http://dpdk.org/ml/archives/dev/2016-January/030915.html
http://dpdk.org/ml/archives/dev/2016-October/048949.html

Remodeling Device-Driver Relationship (1)
Recently changed (Sep’16)

EXxisting structure

dev_driver_list

PMD Drivers

rte driver

pci_driver_list pci_device_list

eth driver

rte pci driver rte pci device

rte eth dev

EAL Initialization

« Virtual devices are also represented by a type
of rte_driver (PMD_VDEV)
* No space for non-PCl/non-virtual devices

14 PUBLIC USE

PMD Drivers

driver_list

device_list

rte driver

e

rte pci driver

rte vdev driver

pci_device_list

vdev_device_list

rte device

A

rte pci device

rte vdev device

pci_driver_list

vdev_driver_list

h

Remodeling Device-Driver Relationship (2)

EXxisting structure

dev_driver_list

PMD Drivers

rte driver

pci_driver_list
A

rte pci driver

EAL Initialization

pci_device_list

I}.m

rte pci device

/

rte eth dev

« Virtual devices are also represented by a type

of rte_driver (PMD_VDEYV) and treated as PCI
devices

* No space for non-PCl/non-virtual devices

15 PUBLIC USE

Ethernet devices are still PCI...

eth driver

/;
rte pci driver rte pci device

rte eth dev

Similar is the case for Crypto devices/driver

h

P

Remodeling Device-Driver Relationship (3)

Recently changed (Sep’16)

PMD Drivers

driver_list

device_list

rte driver

rte pci driver

rte vdev driver

pci_device_list

vdev_device_list

rte device

A

rte pci device

rte vdev device

pci_driver_list

vdev_driver_list

SoC Patch-set introduces this model

PMD Drivers Aryer st

device_list
rte driver

rte device

A

rte pci driver rte pci device
rte vdev driver rte vdev device
rte XXX driver rte XXX device
pci_device_list pci_driver_list
vdev_device_list vdev_driver_list

A unified list for each device/driver type?

Remodeling Device-Driver Relationship (4)

Recently changed (Sep’16) Step 2: Ethernet device bus agnostic

PMD Drivers

rte driver

e

rte pci driver

rte vdev driver

rte XXX driver

pci_device_list

vdev_device_list

17 PUBLIC USE

driver_list

device_list
rte driver

rte device //f

A

rte pci device

rte device

rte eth driver

rte vdev device

rte XXX device
rte eth dev

pci_driver_list

vdev_driver_list

How to link back to exact driver from
ethdevice?

h

P

Taking cue from Linux Device Model

- Bus < Devices < Drivers struct bus_type {

char *name;
<default device>;

= Device attaches on a bus

i;ﬁatch)();

= Drivers services a device (*probe) () ;

(*remove) () ;
(*shutdown) () ;

® DPDK. .. <online, offline, suspend...>;

}i struct device driver {

 rte pci device is attached to ice_driver .
arte_pCi_bUS ﬂmﬂbm}we *bus ;

int (*probe) (struct device *dev):;

[rte pCl drlver SerV|CeS a struct device | int (*remove) (struct device *dev);
rte pCi deVice ;ﬁdbmjweM$

struct device driver driver;
<DMA, Numa information>

- Service includes probe, remove, pei driver
hot-plugging)i

fsl mc _driver

= EAL init and hot-plugging calls
rte pci bus->probe

pci device 2 platform driver
« This in turn calls £51_mc_device 2
rte pci driver->probe

platform device 3

h
P

18 PUBLIC USE

Remodeling Device-Driver Relationship (4)

Step 2
PMD Drivers driver_list

device_list
rte driver

% rte device

/// rte eth driver

rte pci drrver

rte p€i device

rte vdev driver rte vdev device

rte XXX driver rte XXX device

rte eth dev

pci_device_list pci_driver_list
vdev_device_list vdev_driver_list

Something similar has already been proposed on ML [1].
19 PUBLIC USE

Step 3: Bus < Driver < Device

rte eal init()
"-> rte eal devices init ()
"—=> for each bus, call its scan
"—=> For each device scanned, call match
"=> For each match, call driver->probe
PMDs = Bus + Driver
"-> Register for a Bus
"—> either existing or create a new

scan
match
List of buses probe
bus type remove

rte bus register

probe //////:$\\\;Effégister
remove

rte driver <«—— rte_device

_— ™S

rte XXX driver rte XXX device

P

A
4

Agenda

- Introducing NXP SoC
-NXP DPAA: Datapath Acceleration Architecture
- SoC and Standardization - incongruous
- Integrating NXP PMD with DPDK: Stumbling block(s)
- Solution(s) and what needs to be done for it
- Allowing Custom Scanning for devices
- Or, introducing a new Device Model: Bus < Device < Driver

- Summarizing the status
- Questions/Comments

20 PUBLIC USE

h

P

Balancing long and short term goals

- Complete overhaul is a long term goal

-1t requires quite a lot of deliberation

- Changes can be transparently done for PMDs, but impact (performance, ABI) is there
- Step-by-Step approach

- Bring in the pluggable scan way and allow non-PCI device to be introduced

-Once, more PMDs come in, better picture of use-cases
= For example, whether platform bus is default or not

h

21 PUBLIC USE

P

What else can be improved

- Updated semantics for External or Offloaded memory pool
- Applications would prefer non-platform specific implementations
- Application should be hardware offloading agnostic
= That’s a platform property
- Possible approach
- Clear semantics for Packet Mempool which can be offloaded and other mempools
= APIs should be different. For example, rte mempool create is only for non-packet buffers
- In case of unavailability of offloaded pool, transparent fallback to non-offloaded pool
= Use-case: NFV where applications can be deployed to heterogenous host environment

= A patch for supporting fallback is posted on ML
- Transparent fallback vs exposing API for checking support

h

22 PUBLIC USE

P

NXP SoC in DPDK —= Status Check

Run time services for non-I1A
© Available for ARM, Power8 and other architecture

Mempool offload framework — to use external or hardware memory managers
© Merged in 16.07

non-PCle devices support
= Multiple discussions and patchsets — not much progress in terms of review
= Phased approach would allow non-PCI PMDs to be introduced
= Complete overhaul is fairly long term
Event Driven Programming model
= RFC posted by Cavium; Intel and NXP contributed in review

23 PUBLIC USE

h
P

QUESTIONS?

