
PUBLIC USE

SHREYANSH JAIN, HEMANT AGRAWAL

NXP

21/OCT/2016

RESTRUCTURING DPDK DEVICE-DRIVER FRAMEWORK
Expanding DPDK to non-PCI, non-virtual devices

PUBLIC USE2

About Me...

• An engineer with NXP’s Digital Networking Software team

− Leveraging NXP’s hardware accelerators using Open-source datapath frameworks:

DPDK, ODP

− New to DPDK community (May’16)

• Reach out @

 shreyansh.jain@nxp.com

 IRC: #DPDK (nick: shreyansh.)

mailto:shreyansh.jain@nxp.com

PUBLIC USE3

Agenda: Next ~30 minutes

• Introducing NXP SoC

− NXP DPAA: Datapath Acceleration Architecture

− SoC and Standardization - incongruous

• Integrating NXP PMD with DPDK: Stumbling block(s)

− Solution(s) and what needs to be done for it

− Allowing Custom Scanning for devices

− Or, introducing a new Device Model: Bus  Device  Driver

• Summarizing the status

• Questions/Comments

PUBLIC USE4

Agenda

• Introducing NXP SoC

− NXP DPAA: Datapath Acceleration Architecture

− SoC and Standardization - incongruous

• Integrating NXP PMD with DPDK: Stumbling block(s)

− Solution(s) and what needs to be done for it

− Allowing Custom Scanning for devices

− Or, introducing a new Device Model: Bus  Device  Driver

• Summarizing the status

• Questions/Comments

PUBLIC USE5

DPDK on NXP SoCs

Main Goal is to add NXP SoC support in DPDK

• DPDK 16.07 supports NXP platform

configuration (without NXP PMDs)

 defconfig_arm64-dpaa2-linuxapp-gcc

• NXP Networking SoC:

− Have in-built MAC and they are non-PCI based

− Have in-built accelerators to support packet

processing

• BMAN - Packet buffer to be allocated & managed by HW

• QMAN - Packet Queues mapped to hardware queues

• CAAM – Crypto accelerator offload

PUBLIC USE6

Datapath Acceleration

• SEC- Crypto acceleration

• DCE - Data Compression Engine

• PME – Pattern Matching Engine

• L2 Switching -- via Datapath Acceleration Hardware

• Management Complex – Abstraction of configuration of HW

General Purpose Processing

• 8x 64-bit ARMv8 A72 CPUs up to 2.0GHz

• 1MB L2 cache in each 2xA72 core cluster

• HW L1 & L2 Prefetch Engines

• Neon SIMD in all CPUs

• 1MB L3 platform cache

• 2x64b DDR4 up to 2.133GT/s

Accelerated Packet Processing

• 20Gbps SEC-Crypto acceleration

• 10Gbps Pattern Match/RegEx

• 20Gbps Data Compression Engine

High Speed IO

• Supports1x8, 4x4, 4x2, 4x1 PCIe Gen3 controllers

• SR-IOV, End Point, Root Complex

• 2 x SATA 3.0, 2 x USB 3.0 with PHY

Network IO

• Wire Rate IO Processor:

• 8x1/10GbE + 8x1G

• XAUI/XFI/KR and SGMII/QSGMII

• MACSec on up to 4x 1/10GbE

• Layer 2 Switch Assist

NXP DPAA2 Architecture (1/3)

Coherency Fabric

SMMU SMMU

Secure Boot

Trust Zone

Flash Controller

Power Management

SDXC/eMMC

2x DUART

4x I2C

SPI, GPIO, JTAG

SMMU

64-bit

DDR2/3

Memory

Controller

64-bit

DDR4

Memory

Controller

1
M

B

P
la

tf
o

rm

C
a

c
h

e

2x USB3.0 + PHY

Queue/

Buffer

Mgr.

SECDCE

8-Lane 10GHz

SERDES

8-Lane 10GHz

SERDES

8x1/10 + 8x1
PME

64-bit

DDR2/3

Memory

Controller

64-bit

DDR4

Memory

Controller

Advanced

IO

Processor

(AIOP)

WRIOP

Layer 2 Switch Assist

PEB Memory

P
C

Ie

P
C

Ie

P
C

Ie

P
C

Ie

SRIOV
EP

S
A

T
A

 3
.0

S
A

T
A

 3
.0

32-bit DDR4

Memory ControllerManagement Complex

1MB Banked L2

ARM

A72

32KB

L1-D

48KB

L1-I

ARM

A72

32KB

L1-D

48KB

L1-I

1MB Banked L2

ARM

A72

32KB

L1-D

48KB

L1-I

ARM

A72

32KB

L1-D

48KB

L1-I

1MB Banked L2

ARM

A72

32KB

L1-D

48KB

L1-I

ARM

A72

32KB

L1-D

48KB

L1-I

1MB Banked L2

ARM

A72

32KB

L1-D

48KB

L1-I

ARM

A72

32KB

L1-D

48KB

L1-I

PUBLIC USE7

Datapath Acceleration

• SEC- Crypto acceleration

• DCE - Data Compression Engine

• PME – Pattern Matching Engine

• L2 Switching -- via Datapath Acceleration Hardware

• Management Complex – Abstraction of configuration of HW

General Purpose Processing

• 8x 64-bit ARMv8 A72 CPUs up to 2.0GHz

• 1MB L2 cache in each 2xA72 core cluster

• HW L1 & L2 Prefetch Engines

• Neon SIMD in all CPUs

• 1MB L3 platform cache

• 2x64b DDR4 up to 2.133GT/s

Accelerated Packet Processing

• 20Gbps SEC-Crypto acceleration

• 10Gbps Pattern Match/RegEx

• 20Gbps Data Compression Engine

High Speed IO

• Supports1x8, 4x4, 4x2, 4x1 PCIe Gen3 controllers

• SR-IOV, End Point, Root Complex

• 2 x SATA 3.0, 2 x USB 3.0 with PHY

Network IO

• Wire Rate IO Processor:

• 8x1/10GbE + 8x1G

• XAUI/XFI/KR and SGMII/QSGMII

• MACSec on up to 4x 1/10GbE

• Layer 2 Switch Assist

48KB

L1-I

32KB

L1-D

48KB

L1-I

2MB Banked L2

ARM

A72

32KB

L1-D

48KB

L1-I

ARM

A72

32KB

L1-D

48KB

L1-I

1MB Banked L2

ARM

A72

32KB

L1-D

48KB

L1-I

ARM

A72

32KB

L1-D

48KB

L1-I

Coherency Fabric

SMMU SMMU

Secure Boot

Trust Zone

Flash Controller

Power Management

SDXC/eMMC

2x DUART

4x I2C

SPI, GPIO, JTAG

SMMU

64-bit

DDR2/3

Memory

Controller

64-bit

DDR4

Memory

Controller

1MB

Platform

Cache

2x USB3.0 + PHY

Queue/

Buffer

Mgr.

SECDCE

8-Lane 10GHz SERDES 8-Lane 10GHz SERDES

8x1/10 + 8x1

PME

64-bit

DDR2/3

Memory

Controller

64-bit

DDR4

Memory

Controller

Advanced

IO

Processor

(AIOP)

WRIOP

Layer 2 Switch Assist

PEB Memory

P
C

Ie

P
C

Ie

P
C

Ie

P
C

Ie

SRIOV
EP

S
A

T
A

 3
.0

S
A

T
A

 3
.0

32-bit DDR4

Memory Controller

48KB

L1-I

32KB

L1-D

48KB

L1-I

2MB Banked L2

ARM

A72

32KB

L1-D

48KB

L1-I

ARM

A72

32KB

L1-D

48KB

L1-I

1MB Banked L2

ARM

A72

32KB

L1-D

48KB

L1-I

ARM

A72

32KB

L1-D

48KB

L1-I

Management Complex

NXP DPAA2 Architecture (2/3)

Queue/

Buffer

Mgr.

SECDCE

PME

Management Complex

A fully virtualized and isolated Data Path

Acceleration Subsystem.

• Kernel bypassing and zero copy with

user-space virtual addressing

• Fully isolated and security provisioning

for DPAA portal and memory accesses.

• Virtual switching allows convenient and

isolated access to acceleration offload.

MC or Management Complex provides

object abstraction for various underlying

components

• It allows for a simplified interface to the

hardware accelerator blocks

8x1/10 + 8x1

WRIOP

Layer 2 Switch Assist

PEB Memory WRIOP for line rate Networking

• Intelligent distribution, queuing and drop

decisions

• Supports multiple Interface profiles

• Has an embedded L2 switch

Various functional accelerator blocks

• SEC supports bulk crypto encryption and

various protocol offload

• PME or Pattern Match Engine

• DCE or Data Compression Engine

• QMAN (Queue Manager) provides

efficient, isolated, high-bandwidth packet

queues

• BMAN or Buffer Manager allows packets

to be stored on DDR, allowing pool

segregation and lock-free access.

PUBLIC USE8

NXP DPAA2 Architecture (3/3)

DPDK Framework

DistributionDistribution

DPNI
#2

DPNI
#1

FQs FQs

mempool

mbufEthernet Poll Mode Driver Framework

User Application

Th1 Th2 Th8Th3

Que

ue

Que

ue

Que

ue

Que

ue

Hardware provided queues are

exposed to the application

through PMD

Thread affinity to hardware

accelerator instance

Packet pool offloaded to

hardware

PUBLIC USE9

SoCs are not necessarily standardized

A typical networking SoC contains one or more MAC within the chip

• Different ways to connect the peripherals (or MAC):

− Platform Bus e.g. NXP DPAA (LS1043)

− PCI Bus e.g. Cavium ThunderX

− Or any other proprietary bus e.g. NXP DPAA2 (fsl-mc bus for LS2088)

• SoCs do not have an standard definition of bus like PCI

− Even assuming a platform bus is not right

− Non-standardized way of realizing the devices in user-space (or kernel)

PUBLIC USE10

Agenda

• Introducing NXP SoC

− NXP DPAA: Datapath Acceleration Architecture

− SoC and Standardization - incongruous

• Integrating NXP PMD with DPDK: Stumbling block(s)

− Solution(s) and what needs to be done for it

− Allowing Custom Scanning for devices

− Or, introducing a new Device Model: Bus  Device  Driver

• Summarizing the status

• Questions/Comments

PUBLIC USE11

NXP PMD over DPDK: Integration stumbling block

• Inherently a PCI inclined architecture

− DPDK was designed around PCI devices; there are traces of this across framework

 rte_eth_dev has rte_pci_device as a member

 eth_driver has rte_pci_driver as a member

• All Ethernet devices are not PCI

• Adding support for more bus type possible, but breaks the ABI everytime

− EAL initialization scans the PCI bus (and VDEV) only

 Assumes that all devices are discoverable from sysfs

 It is possible to include more ‘standard’ scan functions (Platform, AMBA…)

 But, ideal would be to have a pluggable model – let Drivers (or bus) perform the scan

PUBLIC USE12

Source: DPDK SF Summit 2015: “Future Enhancements to DPDK

Framework” by Keith Wiles, Principal Engineer, Intel Corporation

There have been proposals to fix this… (1/2)

PUBLIC USE13

There have been proposals to fix this… (2/2)

• First series of SoC related improvement sent on ML in Jan’16 [1]

− Introduces rte_soc_driver, rte_soc_device (and other internal structures)

• SoC registration and de-registration methods and their invocation from rte_eal_init()

• Maintaining new linked-lists for SoC devices/drivers (soc_driver_list, soc_device_list)

• Scanning of SoC devices from platform bus only

− Subsequent updates allowed for ‘default’ scan and match [2]

• PMDs can implement their own scan which is hooked on from EAL initialization

• Default implementation from first series continued as helpers

− Overall model allows for a new type of device parallel to PCI

 SoC or non-PCI?

• Next Step: There is a need for a better model

− One that is agnostic to such ‘device type’ changes in long run

[1] http://dpdk.org/ml/archives/dev/2016-January/030915.html

[2] http://dpdk.org/ml/archives/dev/2016-October/048949.html

V
4

 o
f
p

a
tc

h
-s

e
t
is

 u
n
d

e
r

re
v
ie

w

http://dpdk.org/ml/archives/dev/2016-January/030915.html
http://dpdk.org/ml/archives/dev/2016-October/048949.html

PUBLIC USE14

Recently changed (Sep’16)

Remodeling Device-Driver Relationship (1)

Existing structure

PMD Drivers

rte_driver

rte_pci_driver rte_pci_device

rte_eth_dev

dev_driver_list

pci_driver_list pci_device_list

• Virtual devices are also represented by a type

of rte_driver (PMD_VDEV)

• No space for non-PCI/non-virtual devices

EAL Initialization

PMD Drivers

rte_driver

rte_device

rte_vdev_driver

rte_pci_driver

rte_vdev_device

rte_pci_device

pci_device_list

vdev_device_list

pci_driver_list

vdev_driver_list

driver_list

device_list

eth_driver

PUBLIC USE15

Ethernet devices are still PCI…

Remodeling Device-Driver Relationship (2)

Existing structure

PMD Drivers

rte_driver

rte_pci_driver rte_pci_device

rte_eth_dev

dev_driver_list

pci_driver_list pci_device_list

• Virtual devices are also represented by a type

of rte_driver (PMD_VDEV) and treated as PCI

devices

• No space for non-PCI/non-virtual devices

EAL Initialization

PMD Drivers

rte_driver

rte_device

rte_vdev_driver

rte_pci_driver

rte_vdev_device

rte_pci_device

pci_device_list

vdev_device_list

pci_driver_list

vdev_driver_list

driver_list

device_list

eth_driver

eth_driver

rte_eth_dev

rte_pci_driver rte_pci_device

Similar is the case for Crypto devices/driver

PUBLIC USE16

Remodeling Device-Driver Relationship (3)

Recently changed (Sep’16)

PMD Drivers

rte_driver

rte_device

rte_vdev_driver

rte_pci_driver

rte_vdev_device

rte_pci_device

pci_device_list

vdev_device_list

pci_driver_list

vdev_driver_list

driver_list

device_list

Step 1: Introduce a XXX device/driver

PMD Drivers

rte_driver

rte_device

rte_vdev_driver

rte_pci_driver

rte_XXX_driver

rte_vdev_device

rte_pci_device

rte_XXX_device

pci_device_list

vdev_device_list

pci_driver_list

vdev_driver_list

driver_list

device_list

A unified list for each device/driver type?

SoC Patch-set introduces this model

PUBLIC USE17

Remodeling Device-Driver Relationship (4)

Recently changed (Sep’16)

PMD Drivers

rte_driver

rte_device

rte_XXX_driver

rte_vdev_driver

rte_pci_driver

rte_XXX_device

rte_vdev_device

rte_pci_device

pci_device_list

vdev_device_list

pci_driver_list

vdev_driver_list

driver_list

device_list

Step 2: Ethernet device bus agnostic

PMD Drivers

rte_driver

rte_device

rte_vdev_driver

rte_pci_driver

rte_XXX_driver

rte_vdev_device

rte_pci_device

rte_XXX_device

pci_device_list

vdev_device_list

pci_driver_list

vdev_driver_list

driver_list

device_list

rte_eth_driver

rte_eth_dev

rte_driver

rte_device

How to link back to exact driver from

ethdevice?

PUBLIC USE18

Taking cue from Linux Device Model

• Bus  Devices  Drivers

 Device attaches on a bus

 Drivers services a device

• DPDK…

 rte_pci_device is attached to

a rte_pci_bus

 rte_pci_driver services a

rte_pci_device

• Service includes probe, remove,

hot-plugging

 EAL init and hot-plugging calls
rte_pci_bus->probe

• This in turn calls
rte_pci_driver->probe

PUBLIC USE19

Remodeling Device-Driver Relationship (4)

Step 3: Bus  Driver  Device

rte_driver

rte_XXX_driver rte_XXX_device

rte_driver rte_device

Step 2

PMD Drivers

rte_driver

rte_device

rte_XXX_driver

rte_vdev_driver

rte_pci_driver

rte_XXX_device

rte_vdev_device

rte_pci_device

pci_device_list

vdev_device_list

pci_driver_list

vdev_driver_list

driver_list

device_list

rte_eth_driver

rte_eth_dev

rte_driver

rte_device

rte_bus

scan

match

probe

remove

probe

remove

rte_eal_init()

`-> rte_eal_devices_init()

`-> for each bus, call its scan

`-> For each device scanned, call match

`-> For each match, call driver->probe

PMDs = Bus + Driver

`-> Register for a Bus

`-> either existing or create a new

register

unregister

List of buses

bus_type

Something similar has already been proposed on ML [1].

PUBLIC USE20

Agenda

• Introducing NXP SoC

− NXP DPAA: Datapath Acceleration Architecture

− SoC and Standardization - incongruous

• Integrating NXP PMD with DPDK: Stumbling block(s)

− Solution(s) and what needs to be done for it

− Allowing Custom Scanning for devices

− Or, introducing a new Device Model: Bus  Device  Driver

• Summarizing the status

• Questions/Comments

PUBLIC USE21

Balancing long and short term goals

• Complete overhaul is a long term goal

− It requires quite a lot of deliberation

− Changes can be transparently done for PMDs, but impact (performance, ABI) is there

• Step-by-Step approach

− Bring in the pluggable scan way and allow non-PCI device to be introduced

− Once, more PMDs come in, better picture of use-cases

 For example, whether platform bus is default or not

PUBLIC USE22

What else can be improved

• Updated semantics for External or Offloaded memory pool

− Applications would prefer non-platform specific implementations

− Application should be hardware offloading agnostic

 That’s a platform property

• Possible approach

− Clear semantics for Packet Mempool which can be offloaded and other mempools

 APIs should be different. For example, rte_mempool_create is only for non-packet buffers

− In case of unavailability of offloaded pool, transparent fallback to non-offloaded pool

 Use-case: NFV where applications can be deployed to heterogenous host environment

 A patch for supporting fallback is posted on ML

• Transparent fallback vs exposing API for checking support

PUBLIC USE23

NXP SoC in DPDK – Status Check

• Run time services for non-IA

 Available for ARM, Power8 and other architecture

• Mempool offload framework – to use external or hardware memory managers

 Merged in 16.07

• non-PCIe devices support

 Multiple discussions and patchsets – not much progress in terms of review

 Phased approach would allow non-PCI PMDs to be introduced

 Complete overhaul is fairly long term

• Event Driven Programming model

 RFC posted by Cavium; Intel and NXP contributed in review

PUBLIC USE24

QUESTIONS?

