
USERSPACE, October 2016

Improving Driver Performance –
A Worked Example

Bruce Richardson



Legal Disclaimers
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted 
by this document.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of 
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising 
from course of performance, course of dealing, or usage in trade.
This document contains information on products, services and/or processes in development. All 
information provided here is subject to change without notice. Contact your Intel representative to 
obtain the latest forecast, schedule, specifications and roadmaps.
Intel technologies’ features and benefits depend on system configuration and may require enabled 
hardware, software or service activation. Performance varies depending on system configuration. No 
computer system can be absolutely secure. Check with your system manufacturer or retailer or 
learn more at intel.com. 
© 2016 Intel Corporation. Intel, the Intel logo, Intel. Experience What’s Inside, and the Intel. 
Experience What’s Inside logo are trademarks of Intel. Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.



Introduction

• This is a real-world use-case of performance improvement 
using performance analysis tools – in this case “Intel® VTune™ 
Amplifier”

• The issues discovered here were largely discovered by accident 
when investigating other DPDK behaviour

• Hope the walk-through of the issue debug may be of use to 
others when dealing with performance issues

3



Intel® Vtune Amplifier
• Tool for performance 

analysis and debugging
• Uses hardware event 

counters to report on 
issues affecting program 
execution, e.g. CPU 
stalls due to memory 
access

4



Test Setup

Traffic 
Generator

DUT
(Intel® Xeon®

E5-2699 v3 
@ 2.30GHz)

2 x Intel® Ethernet Converged Network 
Adapter XL710-QDA1

5



6



What does this mean?

• We are doing a write to a memory location
• We are subsequently doing a read from that memory location
• The read is getting blocked by the write because the read is for 

more data than just the write
• if the write is for the same amount of data, then we can do “store 

forwarding” to return the data write to the read without hitting 
cache/mem

• if the read can be delayed till later, the write can complete and the read 
can come from cache

• This should not generally show up as a problem in good code

7



8

vmovdqax -0x18(%rsp), %xmm11
vmovdqax -0x28(%rsp), %xmm1
vmovdqax -0x48(%rsp), %xmm3

/* D.1 pkt 3,4 convert format from desc to pktmbuf * 
pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);



Reading this case

• In this case, both the instruction highlighted and the previous 
one are 128-bit loads.

• Therefore either one is a potential candidate for the source of 
the delay

• If we assume that this is the read, then we need to find the 
offending write:

• occurs previous to these [nice and easy to find in C, as there is a 
compiler barrier]

• is of a size smaller than 128-bits

99



Other Weirdness…

• Why does the code: 
pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);

cause a read from memory at all?
• Shouldn’t descs[2] have already been loaded to xmm register 

previously at the line?
descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));

• Let’s look at that previous load lines in vtune…

10



11

descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3)) 

vmovdqux 0x60(%r9), %xmm3
vmovapsx %xmm3, -0x18(%rsp)



What is happening?

• A load instrinsic is resulting in an xmm load followed by a store?
• We have a second mystery.
• Let’s trace back through what happens to the descriptors 

through the code between the two points…

12



desc_pktlen_align

• Only work done between desc[2] load and the offending line is 
function “desc_pktlen_align”

• Again look at assembler listing

13



14

Vector Code

Scalar Code
[Including writes]



15

• When assigning the lengths, 
we use 16-bit writes:

• have to go to memory (can’t 
assign to an xmm register)

• causes the xmm load to 
immediately store to stack

• causes the shuffle op to trigger 
a second load

• That second load (128b) 
blocks on 16b write

pktlen0 = _mm_srli_epi32(pktlen0, PKTLEN_SHIFT);

pktlen0 = _mm_and_si128(pktlen0, pktlen_msk);

pktlen0 = _mm_packs_epi32(pktlen0, zero);

vol.dword = _mm_cvtsi128_si64(pktlen0);

/* let the descriptor byte 15-14 store the pkt len */

*((uint16_t *)&descs[0]+7) = vol.e[0];

*((uint16_t *)&descs[1]+7) = vol.e[1];

*((uint16_t *)&descs[2]+7) = vol.e[2];

*((uint16_t *)&descs[3]+7) = vol.e[3];

The Source of the problem



16

Rewrite to use entirely vector 
operations:
• keeps things in xmm

registers
• saves unnecessary loads 

and stores
• prevents store forward errors
• improves performance.
• makes people happy*

pktlen0 = _mm_srli_epi32(pktlen0, PKTLEN_SHIFT);

pktlen0 = _mm_and_si128(pktlen0, pktlen_msk);

pktlen0 = _mm_packs_epi32(pktlen0, pktlen0);

descs[3] = _mm_blend_epi16(descs[3], pktlen0, 0x80);

pktlen0 = _mm_slli_epi64(pktlen0, 16);

descs[2] = _mm_blend_epi16(descs[2], pktlen0, 0x80);

pktlen0 = _mm_slli_epi64(pktlen0, 16);

descs[1] = _mm_blend_epi16(descs[1], pktlen0, 0x80);

pktlen0 = _mm_slli_epi64(pktlen0, 16);

descs[0] = _mm_blend_epi16(descs[0], pktlen0, 0x80);

The Fix

*NOTE: happiness not guaranteed



17

Result
• Stalls due to Loads Blocked 

by Store Forwarding

dropped about 19x:
• Before: 0.189
• After: 0.010

• Overall PMD performance 
measured by testpmd
increased by over 5%.


	Improving Driver Performance – A Worked Example
	Legal Disclaimers
	Introduction
	Intel® Vtune Amplifier
	Test Setup
	Slide Number 6
	What does this mean?
	Slide Number 8
	Reading this case
	Other Weirdness…
	Slide Number 11
	What is happening?
	desc_pktlen_align
	Slide Number 14
	The Source of the problem
	The Fix
	Result

