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Introduction

• This is a real-world use-case of performance improvement 
using performance analysis tools – in this case “Intel® VTune™ 
Amplifier”

• The issues discovered here were largely discovered by accident 
when investigating other DPDK behaviour

• Hope the walk-through of the issue debug may be of use to 
others when dealing with performance issues
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Intel® Vtune Amplifier
• Tool for performance 

analysis and debugging
• Uses hardware event 

counters to report on 
issues affecting program 
execution, e.g. CPU 
stalls due to memory 
access
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Test Setup

Traffic 
Generator

DUT
(Intel® Xeon®

E5-2699 v3 
@ 2.30GHz)

2 x Intel® Ethernet Converged Network 
Adapter XL710-QDA1
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What does this mean?

• We are doing a write to a memory location
• We are subsequently doing a read from that memory location
• The read is getting blocked by the write because the read is for 

more data than just the write
• if the write is for the same amount of data, then we can do “store 

forwarding” to return the data write to the read without hitting 
cache/mem

• if the read can be delayed till later, the write can complete and the read 
can come from cache

• This should not generally show up as a problem in good code
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vmovdqax -0x18(%rsp), %xmm11
vmovdqax -0x28(%rsp), %xmm1
vmovdqax -0x48(%rsp), %xmm3

/* D.1 pkt 3,4 convert format from desc to pktmbuf * 
pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);



Reading this case

• In this case, both the instruction highlighted and the previous 
one are 128-bit loads.

• Therefore either one is a potential candidate for the source of 
the delay

• If we assume that this is the read, then we need to find the 
offending write:

• occurs previous to these [nice and easy to find in C, as there is a 
compiler barrier]

• is of a size smaller than 128-bits
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Other Weirdness…

• Why does the code: 
pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);

cause a read from memory at all?
• Shouldn’t descs[2] have already been loaded to xmm register 

previously at the line?
descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));

• Let’s look at that previous load lines in vtune…

10



11

descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3)) 

vmovdqux 0x60(%r9), %xmm3
vmovapsx %xmm3, -0x18(%rsp)



What is happening?

• A load instrinsic is resulting in an xmm load followed by a store?
• We have a second mystery.
• Let’s trace back through what happens to the descriptors 

through the code between the two points…
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desc_pktlen_align

• Only work done between desc[2] load and the offending line is 
function “desc_pktlen_align”

• Again look at assembler listing
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Vector Code

Scalar Code
[Including writes]
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• When assigning the lengths, 
we use 16-bit writes:

• have to go to memory (can’t 
assign to an xmm register)

• causes the xmm load to 
immediately store to stack

• causes the shuffle op to trigger 
a second load

• That second load (128b) 
blocks on 16b write

pktlen0 = _mm_srli_epi32(pktlen0, PKTLEN_SHIFT);

pktlen0 = _mm_and_si128(pktlen0, pktlen_msk);

pktlen0 = _mm_packs_epi32(pktlen0, zero);

vol.dword = _mm_cvtsi128_si64(pktlen0);

/* let the descriptor byte 15-14 store the pkt len */

*((uint16_t *)&descs[0]+7) = vol.e[0];

*((uint16_t *)&descs[1]+7) = vol.e[1];

*((uint16_t *)&descs[2]+7) = vol.e[2];

*((uint16_t *)&descs[3]+7) = vol.e[3];

The Source of the problem
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Rewrite to use entirely vector 
operations:
• keeps things in xmm

registers
• saves unnecessary loads 

and stores
• prevents store forward errors
• improves performance.
• makes people happy*

pktlen0 = _mm_srli_epi32(pktlen0, PKTLEN_SHIFT);

pktlen0 = _mm_and_si128(pktlen0, pktlen_msk);

pktlen0 = _mm_packs_epi32(pktlen0, pktlen0);

descs[3] = _mm_blend_epi16(descs[3], pktlen0, 0x80);

pktlen0 = _mm_slli_epi64(pktlen0, 16);

descs[2] = _mm_blend_epi16(descs[2], pktlen0, 0x80);

pktlen0 = _mm_slli_epi64(pktlen0, 16);

descs[1] = _mm_blend_epi16(descs[1], pktlen0, 0x80);

pktlen0 = _mm_slli_epi64(pktlen0, 16);

descs[0] = _mm_blend_epi16(descs[0], pktlen0, 0x80);

The Fix

*NOTE: happiness not guaranteed
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Result
• Stalls due to Loads Blocked 

by Store Forwarding

dropped about 19x:
• Before: 0.189
• After: 0.010

• Overall PMD performance 
measured by testpmd
increased by over 5%.
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