
optimal performance everywhere

Rallying with a Formula 1

Thomas Monjalon – 6WIND

DPDK Summit Userspace – Dublin – 2016

Summary

 DPDK is about

performance with various architectures/devices/environments
thanks to optimizations/offloads and simplicity

 call to participation to fill the gaps

 more details?

Lightning Speed

1/ high throughput

 main priority

2/ low latency?

 may be studied

3/ no guarantee on low jitter

 real-time system?

Run on several Architectures

 DPDK is not Intel®

 (not anymore Intel® DPDK)

 however the largest contributor

 Regression must be checked
on every supported machines

 best effort from contributors

ARMv7 ARMv8 Power8 x86-32 x86-64

lib/acl

lib/distributor

lib/hash

lib/ip_frag

lib/lpm

lib/reorder

lib/sched

net/bnx2x - -

net/bnxt - -

net/cxgbe -

net/e1000 -

net/ena -

net/enic -

net/fm10k

net/i40e

net/ixgbe

net/mlx4

net/mlx5

net/nfp - -

net/qede - -

net/szedata2

net/thunderx

net/vhost

net/virtio

Architecture-specific Implementation

 reusable and generic code in EAL
 librte_eal/common/include/generic/

 librte_eal/common/include/arch/

 librte_eal/common/arch/

 library or driver specific code in separate files
 librte_acl/acl_run_altivec.c

 librte_acl/acl_run_avx2.c

 librte_acl/acl_run_neon.c

 librte_acl/acl_run_scalar.c

 librte_acl/acl_run_sse.c

 build-time CPU features supported by the compiler
 #ifdef RTE_MACHINE_CPUFLAG_*

 run-time CPU detection
 rte_cpu_get_flag_enabled(RTE_CPUFLAG_*)

 best available optimization in only one build/package (e.g. SSE3/SSE4/AVX2/AVX512)

Function Multi-Versioning

 manual/legacy method (currently used in DPDK)

 specific compilation of whole file

 function pointer defined at run-time

 flatten function attribute

 inline calls in the function

 allow more code to be optimized by compiler

 target function attribute

 build function with specific flags

 target_clones function attribute

 build function clones with specific flags

 select the best one at run-time through ifunc resolver

 no manual tuning

Vector (SIMD) Optimizations

 ISA-specific intrinsic functions

 generic GCC vector type

 __attribute__ ((vector_size (n)))

 limited to simple operations

 Maintenance of vectorized code

 Who is responsible and/or expert? lib maintainer? arch maintainer?

 How to coordinate a change affecting several drivers on several architectures?

 Risk of deviating features/behaviour in driver paths

CPU/cache Optimizations

 Many techniques

 hot/cold attributes

 inlining

 cache alignment

 bulk

 prefetch

 ...

 How generic is the performance gain (or loss)?

Long list of supported Devices

 multi-bus

 PCI

 SoC

 virtual

 generic interfaces

 net (ethdev)

 crypto (cryptodev)

Unlock the full power of the Devices

 offloads in NIC

 load balancing (flow steering)

 new Rx filtering API

 segmentation offloads (LRO, TSO)

 new software implementation for virtio

 checksum offloads

 new flags

 common support

 software emulation to fill the gaps

 early access to hardware features

 unstable API

 specific features in common interface or picked in drivers?

Unlock the full power of the Machine

 custom mempool handlers

 not used yet?

 event driven model

 NPU

 other usages in software design?

Flexible Packaging

 split in multiple libraries

 or combined in one linker script

 static .a

 more efficient

 dynamic .so

 distributions choice

 drivers as plugins

 standard make install (since v2.2)

 integrated in some distributions

Choices of Linux kernel Bypass

 userspace-friendly kernel modules

 vmxnet3-usermap

 mlx/verbs thanks to RDMA

 no root access required

 less code in PMD

 UIO kernel modules

 igb_uio (out-of-tree)

 uio_pci_generic (no MSI/MSI-X, i.e. no VF device)

 VFIO kernel module

 vfio-pci (IOMMU, performance loss?)

 vfio-pci noiommu mode (since v4.5)

 i40e: 34.8 kSLOC

 mlx4: 4.2 kSLOC

Multiple Environments

 not only Linux

 FreeBSD

 not only kernel bypass in a full blown OS?

 OsV unikernel?

 no hugepage

 works with virtual devices

 requires more work for DMA

Usability

 more/better default values

 command line (-m, -n, -c, etc)

 thresholds

 avoid build-time configuration

 run-time configuration

 by application

 argc/argv must be replaced by a simpler API

 by user

 command line

 file

 specific to the application

From bare-metal Framework to Library

 a long road

 ease compilation in existing projects

 must generate a pkg-config file

 pluggable logs

 should be fixed now

 avoid forcing application design

 thread management?

 no exit()

 kill rte_panic() in libraries

Developer Tools

 More debug tools

 pdump

 valgrind

 Language Bindings

 C native

 C++ supported as best effort

 Other generic languages? Go? Rust?

 Specific languages? P4? eBPF/XDP?

Who is driving this super car?

 Vendors

 show capabilities of their devices and processors

 R&D labs

 userspace development accelerate time to market

 Manufacturers

 highest performance

Where is it Used?

 Equipments

 Telecom, High End Switches, Large Volume Servers, Security

 Technology

 Legacy, SDN, NFV

 OS

 RHEL, Fedora, Ubuntu, Clear Linux, Mirantis OpenStack

 Stacks

 6WIND, OVS, BESS, VPP, ODP, OpenFastPath, Seastar, ANS, mTCP, Butterfly, Packet-journey

 Traffic Generators

 pktgen-dpdk, Moongen, TRex, WARP17

Gathering Contributors

 started for x86 with Intel drivers only

 2012: DPDK users working without cooperation

 private DPDK forks

 2013: 6WIND launched dpdk.org initiative

 other similar projects were started

 Cisco VPP (closed source before this year)

 Italian projects from Pisa University (Netmap, PF_RING, PFQ)

 2016: Linux kernel start building XDP solution

 2016: major hardware vendors involved in DPDK

 IBM Power and ARM architectures

 drivers for almost all fast NICs

 2017: network processors (NPU)?

 New Governance?

2016 - Welcome ARM!

Questions?
Thomas Monjalon

thomas.monjalon@6wind.com

tmonjalo / freenode #DPDK

