
optimal performance everywhere

Rallying with a Formula 1

Thomas Monjalon – 6WIND

DPDK Summit Userspace – Dublin – 2016



Summary

 DPDK is about

performance with various architectures/devices/environments
thanks to optimizations/offloads and simplicity

 call to participation to fill the gaps

 more details?



Lightning Speed

1/ high throughput

 main priority

2/ low latency?

 may be studied

3/ no guarantee on low jitter

 real-time system?



Run on several Architectures

 DPDK is not Intel®

 (not anymore Intel® DPDK)

 however the largest contributor

 Regression must be checked
on every supported machines

 best effort from contributors



ARMv7 ARMv8 Power8 x86-32 x86-64

lib/acl     

lib/distributor     

lib/hash     

lib/ip_frag     

lib/lpm     

lib/reorder     

lib/sched     

net/bnx2x - - 

net/bnxt - - 

net/cxgbe -  

net/e1000 -  

net/ena -  

net/enic -  

net/fm10k  

net/i40e   

net/ixgbe   

net/mlx4   

net/mlx5   

net/nfp - - 

net/qede - - 

net/szedata2 

net/thunderx 

net/vhost     

net/virtio     



Architecture-specific Implementation

 reusable and generic code in EAL
 librte_eal/common/include/generic/

 librte_eal/common/include/arch/

 librte_eal/common/arch/

 library or driver specific code in separate files
 librte_acl/acl_run_altivec.c

 librte_acl/acl_run_avx2.c

 librte_acl/acl_run_neon.c

 librte_acl/acl_run_scalar.c

 librte_acl/acl_run_sse.c

 build-time CPU features supported by the compiler
 #ifdef RTE_MACHINE_CPUFLAG_*

 run-time CPU detection
 rte_cpu_get_flag_enabled(RTE_CPUFLAG_*)

 best available optimization in only one build/package (e.g. SSE3/SSE4/AVX2/AVX512)



Function Multi-Versioning

 manual/legacy method (currently used in DPDK)

 specific compilation of whole file

 function pointer defined at run-time

 flatten function attribute

 inline calls in the function

 allow more code to be optimized by compiler

 target function attribute

 build function with specific flags

 target_clones function attribute

 build function clones with specific flags

 select the best one at run-time through ifunc resolver

 no manual tuning



Vector (SIMD) Optimizations

 ISA-specific intrinsic functions

 generic GCC vector type

 __attribute__ ((vector_size (n)))

 limited to simple operations

 Maintenance of vectorized code

 Who is responsible and/or expert? lib maintainer? arch maintainer?

 How to coordinate a change affecting several drivers on several architectures?

 Risk of deviating features/behaviour in driver paths



CPU/cache Optimizations

 Many techniques

 hot/cold attributes

 inlining

 cache alignment

 bulk

 prefetch

 ...

 How generic is the performance gain (or loss)?



Long list of supported Devices

 multi-bus

 PCI

 SoC

 virtual

 generic interfaces

 net (ethdev)

 crypto (cryptodev)



Unlock the full power of the Devices

 offloads in NIC

 load balancing (flow steering)

 new Rx filtering API

 segmentation offloads (LRO, TSO)

 new software implementation for virtio

 checksum offloads

 new flags

 common support

 software emulation to fill the gaps

 early access to hardware features

 unstable API

 specific features in common interface or picked in drivers?



Unlock the full power of the Machine

 custom mempool handlers

 not used yet?

 event driven model

 NPU

 other usages in software design?



Flexible Packaging

 split in multiple libraries

 or combined in one linker script

 static .a

 more efficient

 dynamic .so

 distributions choice

 drivers as plugins

 standard make install (since v2.2)

 integrated in some distributions



Choices of Linux kernel Bypass

 userspace-friendly kernel modules

 vmxnet3-usermap

 mlx/verbs thanks to RDMA

 no root access required

 less code in PMD

 UIO kernel modules

 igb_uio (out-of-tree)

 uio_pci_generic (no MSI/MSI-X, i.e. no VF device)

 VFIO kernel module

 vfio-pci (IOMMU, performance loss?)

 vfio-pci noiommu mode (since v4.5)

 i40e: 34.8 kSLOC

 mlx4: 4.2 kSLOC



Multiple Environments

 not only Linux

 FreeBSD

 not only kernel bypass in a full blown OS?

 OsV unikernel?

 no hugepage

 works with virtual devices

 requires more work for DMA



Usability

 more/better default values

 command line (-m, -n, -c, etc)

 thresholds

 avoid build-time configuration

 run-time configuration

 by application

 argc/argv must be replaced by a simpler API

 by user

 command line

 file

 specific to the application



From bare-metal Framework to Library

 a long road

 ease compilation in existing projects

 must generate a pkg-config file

 pluggable logs

 should be fixed now

 avoid forcing application design

 thread management?

 no exit()

 kill rte_panic() in libraries



Developer Tools

 More debug tools

 pdump

 valgrind

 Language Bindings

 C native

 C++ supported as best effort

 Other generic languages? Go? Rust?

 Specific languages? P4? eBPF/XDP?



Who is driving this super car?

 Vendors

 show capabilities of their devices and processors

 R&D labs

 userspace development accelerate time to market

 Manufacturers

 highest performance



Where is it Used?

 Equipments

 Telecom, High End Switches, Large Volume Servers, Security

 Technology

 Legacy, SDN, NFV

 OS

 RHEL, Fedora, Ubuntu, Clear Linux, Mirantis OpenStack

 Stacks

 6WIND, OVS, BESS, VPP, ODP, OpenFastPath, Seastar, ANS, mTCP, Butterfly, Packet-journey

 Traffic Generators

 pktgen-dpdk, Moongen, TRex, WARP17



Gathering Contributors

 started for x86 with Intel drivers only

 2012: DPDK users working without cooperation

 private DPDK forks

 2013: 6WIND launched dpdk.org initiative

 other similar projects were started

 Cisco VPP (closed source before this year)

 Italian projects from Pisa University (Netmap, PF_RING, PFQ)

 2016: Linux kernel start building XDP solution

 2016: major hardware vendors involved in DPDK

 IBM Power and ARM architectures

 drivers for almost all fast NICs

 2017: network processors (NPU)?

 New Governance?



2016 - Welcome ARM!



Questions?
Thomas Monjalon

thomas.monjalon@6wind.com

tmonjalo / freenode #DPDK


