MmOS Networking Stack: a
Specialized Network
Programming Library for
Stateful Middleboxes

http://mos.kaist.edu/

KYOUNGSOO PARK

ASIM JAMSHED, YOUNGGYUN MOON, DONGHWI KIM & DONGSU HAN
SCHOOL OF ELECTRICAL ENGINEERING, KAIST

Network Middlebox

Networking devices that provide extra functionalities

- Switches/routers = L2/L3 devices

- All others are called middleboxes ® v % W X
&

L)
Firewalls \;j‘i
’ B

‘ ®
L :
Web/SSL proxies ’*i T‘ s

L7 protocol analyzers

Europe - Network Aggregate Traffic Profile

mOS networking stack DPDK SUMMIT 2016

Middleboxes are Increasingly Popular

Middleboxes are ubigquitous

- Number of middleboxes =~ number of routers (Enterprise)
> Prevalent in cellular networks (e.g., NAT, firewalls, IDS/IPS)
> Network functions virtualization (NFV)

> SDN controls network functions

Provides key functionalities in modern networks
> Security, caching, load balancing, etc.
- Because original Internet design lacks many features

mOS networking stack DPDK SUMMIT 2016

Most Middleboxes Deal with TCP Traffic

= TCP dominates the Internet ‘ STCP
« 95+% of traffic is TCP [1] 2 UDP
= Flow-processing middleboxes mefc
- Stateful firewalls
* Protocol OI’]OWZGI’S [1] *Comparison of Caching Strategies in Modern

. Cellular Backhaul Networks”, ACM MobiSys 2013.
Cellular data accounting

Intrusion detection/prevention systems
Network address translation
And many others!

TCP state management is complex and error-prone!

mOS networking stack DPDK SUMMIT 2016

Example: Cellular Data Accounting System

Custom middlebox application

No open-source projects

Internet

/

Data Accounting System

W Cellular Core Network

mOS networking stack DPDK SUMMIT 2016

Develop Cellular Data Accounting System

For every IP packet, p

Charge for

sub = FindSubscriber (p.srcIP, p.destIP); retransmission?

sub.usage += p.length;

For every IP packet, p South Korea

if (p is not retransmitted) {
sub = FindSubscriber (p.srcIP, p.destIP);
sub.usage += p.length;

TCP tunneling
attack? [NDSS’'14]

For every IP packet, p Attack Detection
if (p is not retransmitted) {

sub = FindSubscriber (p.srcIP, p.destIP);
sub.usage += p.length;

Logically, simple
process!

} else { // if p is retransmitted
if (p’s payload !'= original payload) ({
report abuse by the subscriber;

mOS networking stack DPDK SUMMIT 2016

Cellular Data Accounting Middlebox

Core logic
- Determine if a packet is retransmitted

- Remember the original payload (e.g, by sampling)
- Key: TCP flow management

How to implement?
> Borrow code from open-source IDS (e.g., Snort/Suricataq)
> Problem: 50~100K code lines tightly coupled with their IDS logic

Another option?
> Borrow code from open-source kernel (e.g., Linux/FreeBSD)
> Problem: kernel is for one end, so it lacks middlebox semantics

What is the common practice? state-of-the-art?
> Implement your own flow management

- Problem: repeat it for every custom middlebox

mOS networking stack DPDK SUMMIT 2016

Programming TCP End-Host Application

® Typical TCP end-host applications ® Typical TCP middleboxes?
TCP application User level « Middlebox logic
 Packet processing | No clear
Berkeley Socket AP| m========= * Flow tracking separation!
* Flow reassembly
TCP/IP stack Kernel level » Spaghetti code?
Berkeley socket API

> Nice abstraction that separates flow management from application
> Write better code if you know TCP internals
- Never requires you to write TCP stack itself

mOS networking stack DPDK SUMMIT 2016

mOS Networking Stack

Reusable networking stack for middleboxes
> Programming abstraction and APIs to developers

Key concepfs
> Separation of flow management from custom logic

- Event-based middlebox development (event/action)
> Per-flow flexible resource consumption

Benefits
> Clean, modular development of stateful middlebboxes

- Developers focus on core logic rather than flow management
> High performance flow management on mTCP stack

mOS networking stack DPDK SUMMIT 2016

Key Abstraction: mOS Monitoring Socket

Represents the middlebox viewpoint on network traffic
> Monitors both TCP connections and IP packets
> Provides similar APl to the Berkeley socket API

User Custom [}« | Custom event handler
context middlebox logic

Monitoring Event
socket K mOS socket API generation
Flow .
context mOS stack Separation of flow management
from custom middlebox logic!
Packets

mOS networking stack DPDK SUMMIT 2016

Shared-Nothing Parallel Architecture

CPU Core O Core n
- —A
Custom Custom .| mﬁs e\ll<efnt >
middlebox logic middlebox logic callback function
MOS socket API mOS socket API
Thread | —
mOS stack* moOS stack ——1, TCP flow management
Packet 1/0
i User-level packet I/0O library
_____ I | o
Kernel

Kernel-level NIC driver (DPDK/PSIO/PCAP)

v

NIC RX 1‘
Queue -

mOS networking stack DPDK SUMMIT 2016

mOS Flow Management

mOS stack
emulation L

Server side

State Receive
TCP stack buffer

Real h P Real
Client J‘ \\ Server
P

TCP stack _TCP stack

Client side State Receive
\TCP stack buffer /
Dual TCP stack management

o Track the TCP states of both client and server TCP stacks

Example: a client sends a SYN packet
> Client-side state changes from CLOSED to SYN_SENT

o Server-side state changes from LISTEN to SYN_RECEIVED

mOS networking stack DPDK SUMMIT 2016

MmOS Event

Notable condition that merits middlebox processing
o Different from TCP socket events

Built-in event (BE)
o Events that happen naturally in TCP processing
o e.g., packet arrival, TCP connection start/teardown, retransmission, etc.

User-defined event (UDE)
o User can define their own event
o UDE = base event + filter function

o Raised when base event triggers and filter evaluates to TRUE
> Nested event: base event can be either BE or UDE
o e.g., HTTP request, 3 duplicate ACKs, malicious retransmission

Middlebox logic = a set of <event, event handler> tuples

mOS networking stack DPDK SUMMIT 2016

Sample Code: Initialization

static void
thread init (mctx t mctx)

{
monitor filter ft ={0};

int msock; event t http event;
msock = mtcp socket (mctx, AF INET, MOS SOCK MONITOR STREAM, O0);

ft.stream syn filter = "dst net 216.58 and dst port 80";

mtcp bind monitor filter (mctx, msock, &ft);
mtcp register callback(mctx, msock, MOS ON CONN START, MOS HK SND, on flow start);

http event = mtcp define event (MOS ON CONN NEW DATA, chk http request);
mtcp register callback(mctx, msock, http event, MOS HK RCV, on http request);

}

Sets up a traffic filter in Berkeley packet filter (BPF) syntax
Defines a user-defined event that detects an HTTP request
Uses a built-in event that monitors each TCP connection start event

mOS networking stack DPDK SUMMIT 2016

UDE Filter Function

int side, event t event)

static bool chk http request (mctx t m, int sock,

{
struct httpbuf *p;
u _char* temp; int r;
if (side != MOS SIDE SVR) // monitor only server-side buffer
return false;
if ((p = mtcp get uctx(m, sock)) == NULL) {
p = calloc(l, sizeof (struct httpbuf)):;

mtcp set uctx(m, sock, p);

}

r = mtcp peek(m, sock, side, p->buf + p->len, REQMAX - p->len - 1);
p—->len += r;
if ((temp = strstr (p->buf, "\n\n"))

p->reglen = temp - p->buf;

return true;

| | (temp = strstr (p->buf,

}

return false;

}

p->buf [p->len] = 0;
"\r\n\r\n"))

{

Called whenever the base event is triggered
If it returns TURE, UDE callback function is called

mOS networking stack DPDK SUMMIT 2016

Event Generation Process

mOS stack

ya \
Event generation
Sender (P Sengeiicr Hfor sender TCP J

state update state update

: . Event generation
Packet arrival zzfeelve(;;eCP for receiver TCP Receiver
up state update

Carefully reflects what a middlbox sees and operates on

Based on the estimation of sender/receiver’'s TCP states
- Packet arrival: sender’s state has already been updated

> Infer the receiver stack update with a new packet

mOS networking stack DPDK SUMMIT 2016

Scalable Event Management

Each flow subscribes to a set of events

Each flow can change its own set of events over time
> Some flow adds a new event or delete an event

- Some flow changes the event handler for an event

Scalability problem
> How to manage event sets for 100+K concurrent flows?

Observation: the same event sets are shared by mulfiple flows
How to represent the event set for a flowe

How to efficiently find the same event set?
> When a flow updates its set of events?

mOS networking stack DPDK SUMMIT 2016

Event Dependency Tree

Represents how a UDE is defined

Start from a built-in event as root

New flow

Points to a virtual root that has
a set of dependency trees

ON CONN_NEW_DATA

on ftp event

YouTube_request_event

on_yt_request Event handler

mOS networking stack DPDK SUMMIT 2016

Update on Event Dependency Tree

s3 adds a new event <e8, f8> to v3

v4 is created with a new event and s3 points to it

event handler

mOS networking stack DPDK SUMMIT 2016

Efficient Search for an Event Dependency Tree

Each event dependency tree has an ID
o id (virfual root) = XOR sum of hash (event + event handler)

o id (v3) = hash (e11 +f11) @ hash (e10 + f10)

New tfree id after adding or deleting <e, > from 1
- id (1') = id () ® hash (e +)
- Add <e8, 8> to v3¢
- id(v4) = id(v3) @ hash (e8 + f8)
- Remove <el0, f10> from v4?¢
. id (v5) = id(v4) ® hash (e11 +f11)

mOS networking stack DPDK SUMMIT 2016

Current mOS stack API

Socket creation and traffic filter

int mtcp socket (mctx t mctx, int domain, int type, int protocol);
int mtcp close (mctx t mctx, int sock);
int mtcp bind monitor filter (mctx t mctx, int sock, monitor filter t ft);

User-defined event management

event t mtcp _define event(event t ev, FILTER filt);

int mtcp register callback (mctx t mctx, int sock, event t ev, int hook, CALLBACK cb);
Per-flow user-level context management

void * mtcp_get uctx(mctx t mctx, int sock);

void mtcp_set uctx (mctx t mctx, int sock, void *uctx);

Flow data reading

ssize t mtcp_peek (mctx t mctx, int sock, int side, char *buf, size t len);

ssize_ t mtcp_ppeek (mctx t mctx, int sock, int side, char *buf, size t count, off t
seq off);

mOS networking stack DPDK SUMMIT 2016

Current mOS stack API

Packet information retrieval and modification

int mtcp _getlastpkt (mctx t mctx, int sock, int side, struct pkt info *pinfo);

int mtcp_setlastpkt (mctx t mctx, int sock, int side, off t offset, byte *data, uintl6 t
datalen, int option);

Flow information retrieval and flow attribute modification

int mtcp_getsockopt (mctx t mctx, int sock, int 1, int name, void *val, socklen t *len);
int mtcp_setsockopt (mctx t mctx, int sock, int 1, int name, void *val, socklen t len);
Retrieve end-node IP addresses

int mtcp_getpeername (mctx t mctx, int sock, struct sockaddr *addr, socklen t *addrlen);
Per-thread context management

mctx t mtcp create context (int cpu);

int mtcp_destroy context (mctx t mctx);
Initialization
int mtcp_init (const char *mos conf fname);

mOS networking stack DPDK SUMMIT 2016

Fine-grained Resource Allocation

Not all middleboxes require full features
- Some middleboxes do not require flow reassembly

- Some middleboxes monitor only client-side data
- No more monitoring after handling certain events

Fine-control resource consumption
> Disable flow reassembly but keep only metadata
- Enable flow monitoring for one side
- Stop flow monitoring in the middle
> Per-flow manipulation with setsockopt()

// disabling receive buffers for both client and server stacks
int zero = 0;
if (! (config monitor side & MOS SIDE CLI))
mtcp_setsockopt (mctx, sock, SOL_MONSOCKET, MOS_ CLIBUF, &zero, sizeof (zero));
i1f (! (config monitor side & MOS SIDE SVR))
mtcp_setsockopt (mctx, sock, SOL_MONSOCKET, MOS_SVRBUF, &zero, sizeof (zero));

mOS networking stack DPDK SUMMIT 2016

mOS Networking Stack Implementation

Per-thread library TCP stack
o ~26K lines of C code (ITCP: ~11K lines)
> Based on mTCP user level TCP stack [NSDI ‘14]
o Exploits parallelism on multicore systems

User-defined event implementation
- Designed to scale to arbitrary number of events
> |dentical events are automatically shared by multiple flows

Applications ported to mOS: ~9x code line reduction

Application | Modified | _SLOC

Snort 79,889 HTTP/TCP inspection

nDPI 765 25,483 Stateful session management

PRADS 615 10,848 Stateful session management

Abacus - 4,091—486 Detect out-of-order packet retransmission

mOS networking stack DPDK SUMMIT 2016

Evaluation: Experiment Setup

Operating as in-line mode: clients & mOS applications < servers

MOS applications with mQOS stream sockets
> Flow management and forwarding packets by their flows

o 2 X Intel E5-2690 (16 cores, 2.9 GHz)
> 20 MB L3 cache size, 132 GB RAM
o 6 x 10 Gbps NICs

Six pairs of clients and servers: 60 Gbps max
o Intel E3-1220 v3 (4 cores, 3.1 GHz)

> 8 MB L3 cache size
> 16 GB RAM
> 1 x 10 Gbps NIC per machine

mOS networking stack DPDK SUMMIT 2016

Performance Scalability on Multicores

= File download traffic with 192,000 concurrent flows

« Each flow downloads an X-byte content in one TCP connection
A new flow is spawned when a flow terminates

= Two simple applications
« Counting packets per flow (packet arrival event)
« Searching for a string in flow reassembled data (full flow reassembly & DPI)

60 5303 J64B file [@8KBfile
— 50
g_ 42.46
o 40
=

30
'?o 22.84 21.7
g 20 16.66
rE 11.63

10 4.07 5.02 4.5

1.42 123 32
0 I— I—
1 4 16 1 4 16

(# of CPU cores)
Counting packets Searching for a string

mOS networking stack DPDK SUMMIT 2016

Latency Overhead by mOS Applications

— 250 [0 64B file M 8KB file
El
GE) 200 191.9 193.2
=
-% 150 76us
g_ 117.4
S 100 93.8 93.5
3 >8.4 35us l
w 50

0

Direct connection Counting packets Searching for a string

mOS networking stack DPDK SUMMIT 2016

Event Management Performance

40.0 37.2 36.4 36.3 37.4 36.3
= 33.8 32.2
o 28.5
& 30.0 4.4
9 : 18.9
= 20.0
o
'En 10.0 [1 Naive O mOS
3 0.0 T |
g o
— 4 8 16 32 64

of event nodes in an invocation forest

192,000 concurrent flows downloading large files

MOS application searches for a string, dynamically adds a new event
Increases the number of events per flow (4 to 64)

mMOS improves the performance by 3.5 to 17.3 Gbps

mOS networking stack DPDK SUMMIT 2016

Performance Under Selective Resource Consumption

60 56.68 9.97
51.9
>0 46.43
40 39.22
A 3418 A7
o]
)
+ 29.6
3 30
@
o 23.22
- 19 67 — O full flow management
20 -
O w/o client buf management
@ w/o buf management
10 B w/o client side
B w/o client side, w/o server buf mgmt.
0 T T T T T
64 256 1K 4K 16K

File size (B)

mOS networking stack DPDK SUMMIT 2016

Real Application Performance

Application original + pcap |original + DPDK

Snort-AC 0.57 Gbps 8.18 Ghps 9.17 Gbps
Snort-DFC 0.82 Ghps 14.42 Gbps 15.21 Gbps
nDPIReader 0.66 Gbps 28.92 Gbps 28.87 Gbps
PRADS 0.42 Gbps 2.03 Ghps 1.90 Gbps

Workload: real LTE packet trace (~67 GB)

4.5x ~ 28.9x performance improvement

Mostly due to multi-core aware packet processing (DPDK)
MOS brings code modularity and correct flow management

mOS networking stack DPDK SUMMIT 2016

Conclusion

Current middlebox development suffers from
> Lack of modularity
> Lack of readability
> Lack of maintainability

Solution: reusable networking stack for middleboxes

mMOS stack: abstraction for flow management
> Programming abstraction with socket-based API

> Event-driven middlebox processing
o Efficient resource usage with dynamic resource compaosition

mOS networking stack DPDK SUMMIT 2016

mQOS Stack Is Open-Sourced

Public release of mOS stack/API at github
o https://github.com/ndsl-kaist/mOS-networking-stack

mOS Documentation

mOS online manual
o http://mos.kaist.edu/guide/

mOS Documentation

mOS networking stack DPDK SUMMIT 2016

https://github.com/ndsl-kaist/mOS-networking-stack
http://mos.kaist.edu/guide/

hank you!

MOS project page
http://mos.kaist.edu/

mOS networking stack DPDK SUMMIT 2016 33

http://mos.kaist.edu/

Backup Slides: Sample mQOS applications

mOS networking stack DPDK SUMMIT 2016

midstat:
netstats as middlebox

netstat

A command-line tool that displays network statistics
> Active TCP/UDP connections statistics (both outgoing & incoming)

ygmoon{@tree3: ~

Fgmﬂﬂn@trEE3:~S netstat
Active Internet connections (w/o servers)

Proto Recv-(Q Send-(Q Local Address Foreign Address State
5 160 tree3:2222 143.248.129.48:50413 ESTABLISHED
§ @ tree3:2222 143.248.129.48:50412 ESTABLISHED

Prints out the stafistics of end-host kernel networking stack
(Available on Linux, BSD, Solaris, and Windows)
> Used for finding problems in network or measuring traffic amount

mOS networking stack DPDK SUMMIT 2016 36

midstat

A monitoring tool that tracks flow statistics of each side
of ongoing connections
Shows IP addresses, port numbers, and TCP states

Proto CPU|Client Address Client State Server Address Server State
] 10.0.0.12:39476 LAST_ACK 10.0.0.10:80 CLOSING

10.0.0.12:42148 CLOSE_WAIT 10.0.0.10:80 FIN WAIT_ 1
10.0.0.12:3420 LAST_ACK 10.0.0.10:80 FIN WAIT_ 1
16.0.0.12:17591 CLOSE_WAIT 10.0.0.10:80 FIN WAIT_ 1
10.0.0.12:22541 CLOSE_WAIT 10.0.0.10:80 FIN WAIT_ 1
10.0.0.12:22784 CLOSE_WAIT 10.0.0.10:80 FIN WAIT 1
16.0.0.12:27281 CLOSE_WAIT 10.0.0.10:80 FIN WAIT_ 1
16.0.0.12:33422 CLOSE_WAIT 106.0.0.10:80 FIN WAIT_ 1
10.0.0.12:1032 CLOSE_WAIT 10.0.0.10:80 FIN WAIT 1
10.0.0.12:37428 LAST_ACK 10.0.0.10:80 CLOSING

and 4187 more flows ---

i)
3]
)
3]
3]
)
)
i)
3]

mOS networking stack DPDK SUMMIT 2016 37

Implementing midstat without mOS

How to track the TCP states of both server and cliente
> Without mQOS, the app should maintain complex TCP state machines

recv: SYN
send: SYN,ACK

SYN_RCVD

Starting Point

appl: passive open ~,
send:<nothing= ~,

Y

|

|

|

: |
LISTEN 2ppl. actwe open i
i

|

I

|

passive open I

recv: SYN

"""""" send: SYNACK ™ =" ="~~~ ‘or timeout~ "~ %
active open i
i recv: ACK recv: SYN,ACK |
. send: <nothing> send: ACK ;
I
o EIN ESTABLlSHED ;
! appl: clase recv: FIN |
: send:FIN send:ACK passive close i
; = CLOSE WAIT i
v _ i
FIN_WAIT_1 l- e N ="-»| CLOSING sooliclose i
! send:FIN |
recv: ACK recv: FINACK racy: AGK racv: ACK |
send: <noth|ng> send: ACK send:<nothing> LAST_ACK |~ coidiinotfings i
recv: FIN
FIN_WAIT 2 I_ o ack=""" TIMEWAIT ' =='=imimimimimimimimimimim i, N

active close

=== » normal transitions for client
— normal transitions for server

FIN_WAIT_2 '—

active close

condACK= — TIME WAIT

Starting Point

CLOSED ——————————————————————————————————
i I
appl: passive open ~, i

send:<nothing> N\
L S !
a‘ppl: active open !
recv: SYN send:SYN !
send: SYN,ACK hod 1
- N, 1

<
- recv: RST N]
SYN RCVD | .c.ccieio o recvi SYN appl:close 1
- send: SYN,ACK or timeout 1
active open i
: recv: ACK recv: SYN.ACK '
. send: <nothing> send: ACK ;
|

sen GFIN ESTABLISHED ;
appl: close” recv: FIN i
' send:FIN send:ACK passive close i
| .
i el CLOSE_WAIT I
Y recv: FIN !
FIN_WAIT_ 1 [— ‘send:ack ™ "™ CLOSING appl: close |
! send:FIN 1
recv: ACK reov: FINACK rgey: ACK recv: ACK |
send: <noth|ng> send: ACK send:<nothing> LAST_ACK ‘send-<nothing> i
4 i !
AN mrrrr e SO X

——— » normal transitions for client
—— normal transitions for server

mOS networking stack

Client-side TCP state

DPDK SUMMIT 2016

Server-side TCP state

Implementing midstat with mOS

MQOS tracks the TCP states of both client- and server-side
> Notifies the application when there is any TCP state update

Application

Register for MOS_ON_TCP_STATE CHANGE event

Client |+

Client
Server

mOS
ESTABLISHED

ESTABLISHED

> | Server

mOS networking stack

DPDK SUMMIT 2016

Implementing midstat with mOS

MQOS tracks the TCP states of both client- and server-side
> Notifies the application when there is any TCP state update

Application

MOS_ON_TCP_STATE_CHANGE

Client

FIN

Client
Server

mOS

FIN_WAIT 1

CLOSE_WAIT

Server

mOS networking stack

DPDK SUMMIT 2016

midstat Demo

Test environment

treel treed treed
Server midstat Client
Running a web server Download 100KB files
(nginx) at port 80 (using ab)

mOS networking stack DPDK SUMMIT 2016

mHalfback

mOS networking stack DPDK SUMMIT 2016

Halfback

A transport-layer scheme designed for optimizing the flow completion
time (FCT) [CONEXT "15]

o Skips the TCP slow start phase to pace up transmission rate at start
> Performs proactive retransmission for fast packet loss recovery

Phase 1. aggressive startup Phase 2. proactive retransmission

Receiver

Sender

mOS networking stack DPDK SUMMIT 2016

mHaltback Proxy

We design mHalfback, a middlebox for fast packet loss recovery
o Transparently reduces the FCT without modifying end-host stacks

The main logic of mHalfback
> 1) For each TCP data packet arrival, hold a copy of the packet

Receiver

mHalfloack

naer
>ende 1 2 3 45

mOS networking stack DPDK SUMMIT 2016

mHalfback Proxy

We design mHalfback, a middlebox for fast packet loss recovery
o Transparently reduces the FCT without modifying end-host stacks

The main logic of mHalfback
- 2) When an ACK packet comes from the receiver, do retransmission

Receiver

mHalfloack

naer
>ende 1 2 3 45

mOS networking stack DPDK SUMMIT 2016

Implementing mHaltback with mOS

How to perform proactive retransmissione

mtcp getlastpkt () mtcp sendpkt ()
[EnqueueTCPDataPacket();] RemoveACKedPackets();
ProactiveRetransmit();

If (payloadlen > 0) If (ACK packet)

From SERVER From CLIENT

MOS_ON_PKT_IN

mOS networking stack DPDK SUMMIT 2016

mHalfback Demo

= Test environment (A) RTT = 60ms

15Mbps i
Loss ratio = =

1%, 2%, 5%

Server mHalfback Client
— 1300 T, (Diree .
= Results E, 1250 = ae=-2% (Direct) ’,.'

o =@=-5% (Direct) W
= == 1% (via Halfback) _e”” _-A
P - " -
- 1000 o0y (via Halfback) . _,..-"‘"
E - .-r‘ .-.u..--'n
o 750
=
ES 500
2 250
[

0

0 20 40 60 80 100 120 140 160 180 200
Flow Size (KB)

mOS networking stack DPDK SUMMIT 2016

Operation Scenarios of mOS Applications

mOS app Application logic

Event handler (Callback) Packet/flow-level events
I mOS networking API

Packet info || TCPstate || TCPrecv buf| «-- Packet/flow abstraction

MOS stack | sender TCP stack *:.. Receiver TCP stack | TCP flow processing

mOS monitor mOS monitor
(ESY) (inline)

mOS networking stack DPDK SUMMIT 2016

Cellular Data Accounting with Events

Incoming

packet el: packet retransmission event
e (&,)
i—/‘@ S FTeake: see if el has a packet with malicious content

o Called a filter function (boolean function)
|:TFAKE
e3: fake retransmission event
@ o Triggered when el is raised && FT returns true
f, f, f,: action for handling e3

o Called an event handler for e3

e2: new data event (no retransmission)

f,: action for handling €2

Developer: defines a custom event (e3) and provides an action
System: provides regular events (el, e2) and executes event handlers

mOS networking stack DPDK SUMMIT 2016

