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Network Middlebox

Networking devices that provide extra functionalities

- Switches/routers = L2/L3 devices

- All others are called middleboxes ® v % W X
&
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Web/SSL proxies ’*i T‘ s

L7 protocol analyzers

Europe - Network Aggregate Traffic Profile
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Middleboxes are Increasingly Popular

Middleboxes are ubigquitous

- Number of middleboxes =~ number of routers (Enterprise)
> Prevalent in cellular networks (e.g., NAT, firewalls, IDS/IPS)
> Network functions virtualization (NFV)

> SDN controls network functions

Provides key functionalities in modern networks
> Security, caching, load balancing, etc.
- Because original Internet design lacks many features
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Most Middleboxes Deal with TCP Traffic

= TCP dominates the Internet ‘ STCP
« 95+% of traffic is TCP [1] 2 UDP
= Flow-processing middleboxes mefc
- Stateful firewalls
* Protocol OI’]OWZGI’S [1] *Comparison of Caching Strategies in Modern

. Cellular Backhaul Networks”, ACM MobiSys 2013.
Cellular data accounting

Intrusion detection/prevention systems
Network address translation
And many others!

TCP state management is complex and error-prone!
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Example: Cellular Data Accounting System

Custom middlebox application

No open-source projects

Internet

/

Data Accounting System

W Cellular Core Network
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Develop Cellular Data Accounting System

For every IP packet, p

Charge for

sub = FindSubscriber (p.srcIP, p.destIP); retransmission?

sub.usage += p.length;

For every IP packet, p South Korea

if (p is not retransmitted) {
sub = FindSubscriber (p.srcIP, p.destIP);
sub.usage += p.length;

TCP tunneling
attack? [NDSS’'14]

For every IP packet, p Attack Detection
if (p is not retransmitted) {

sub = FindSubscriber (p.srcIP, p.destIP);
sub.usage += p.length;

Logically, simple
process!

} else { // if p is retransmitted
if (p’s payload !'= original payload) ({
report abuse by the subscriber;
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Cellular Data Accounting Middlebox

Core logic
- Determine if a packet is retransmitted

- Remember the original payload (e.g, by sampling)
- Key: TCP flow management

How to implement?
> Borrow code from open-source IDS (e.g., Snort/Suricataq)
> Problem: 50~100K code lines tightly coupled with their IDS logic

Another option?
> Borrow code from open-source kernel (e.g., Linux/FreeBSD)
> Problem: kernel is for one end, so it lacks middlebox semantics

What is the common practice? state-of-the-art?
> Implement your own flow management

- Problem: repeat it for every custom middlebox
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Programming TCP End-Host Application

® Typical TCP end-host applications ® Typical TCP middleboxes?
TCP application User level « Middlebox logic
 Packet processing | No clear
Berkeley Socket AP| m========= * Flow tracking separation!
* Flow reassembly
TCP/IP stack Kernel level » Spaghetti code?
Berkeley socket API

> Nice abstraction that separates flow management from application
> Write better code if you know TCP internals
- Never requires you to write TCP stack itself
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mOS Networking Stack

Reusable networking stack for middleboxes
> Programming abstraction and APIs to developers

Key concepfs
> Separation of flow management from custom logic

- Event-based middlebox development (event/action)
> Per-flow flexible resource consumption

Benefits
> Clean, modular development of stateful middlebboxes

- Developers focus on core logic rather than flow management
> High performance flow management on mTCP stack
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Key Abstraction: mOS Monitoring Socket

Represents the middlebox viewpoint on network traffic
> Monitors both TCP connections and IP packets
> Provides similar APl to the Berkeley socket API

User Custom [}« | Custom event handler
context middlebox logic

Monitoring Event
socket K mOS socket API generation
Flow .
context mOS stack Separation of flow management
from custom middlebox logic!
Packets
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Shared-Nothing Parallel Architecture

CPU Core O Core n
- —A
Custom Custom .| mﬁs e\ll<efnt >
middlebox logic middlebox logic callback function
MOS socket API mOS socket API
Thread | —
mOS stack* moOS stack ——1, TCP flow management
Packet 1/0
i User-level packet I/0O library
_____ I | o
Kernel

Kernel-level NIC driver (DPDK/PSIO/PCAP)

v

NIC RX 1‘
Queue -
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mOS Flow Management

mOS stack
emulation L

Server side

State Receive
TCP stack buffer

Real h P Real
Client J‘ \\ Server
P

TCP stack \_TCP stack

Client side State Receive
\TCP stack buffer /
Dual TCP stack management

o Track the TCP states of both client and server TCP stacks

Example: a client sends a SYN packet
> Client-side state changes from CLOSED to SYN_SENT

o Server-side state changes from LISTEN to SYN_RECEIVED
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MmOS Event

Notable condition that merits middlebox processing
o Different from TCP socket events

Built-in event (BE)
o Events that happen naturally in TCP processing
o e.g., packet arrival, TCP connection start/teardown, retransmission, etc.

User-defined event (UDE)
o User can define their own event
o UDE = base event + filter function

o Raised when base event triggers and filter evaluates to TRUE
> Nested event: base event can be either BE or UDE
o e.g., HTTP request, 3 duplicate ACKs, malicious retransmission

Middlebox logic = a set of <event, event handler> tuples
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Sample Code: Initialization

static void
thread init (mctx t mctx)

{
monitor filter ft ={0};

int msock; event t http event;
msock = mtcp socket (mctx, AF INET, MOS SOCK MONITOR STREAM, O0);

ft.stream syn filter = "dst net 216.58 and dst port 80";

mtcp bind monitor filter (mctx, msock, &ft);
mtcp register callback(mctx, msock, MOS ON CONN START, MOS HK SND, on flow start);

http event = mtcp define event (MOS ON CONN NEW DATA, chk http request);
mtcp register callback(mctx, msock, http event, MOS HK RCV, on http request);

}

Sets up a traffic filter in Berkeley packet filter (BPF) syntax
Defines a user-defined event that detects an HTTP request
Uses a built-in event that monitors each TCP connection start event
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UDE Filter Function

int side, event t event)

static bool chk http request (mctx t m, int sock,

{
struct httpbuf *p;
u _char* temp; int r;
if (side != MOS SIDE SVR) // monitor only server-side buffer
return false;
if ((p = mtcp get uctx(m, sock)) == NULL) {
p = calloc(l, sizeof (struct httpbuf)):;

mtcp set uctx(m, sock, p);

}

r = mtcp peek(m, sock, side, p->buf + p->len, REQMAX - p->len - 1);
p—->len += r;
if ((temp = strstr (p->buf, "\n\n"))

p->reglen = temp - p->buf;

return true;

| | (temp = strstr (p->buf,

}

return false;

}

p->buf [p->len] = 0;
"\r\n\r\n"))

{

Called whenever the base event is triggered
If it returns TURE, UDE callback function is called
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Event Generation Process

mOS stack

ya \
Event generation
Sender (P Sengeiicr Hfor sender TCP J

state update state update

: . Event generation
Packet arrival zzfeelve(;;eCP for receiver TCP Receiver
up state update

Carefully reflects what a middlbox sees and operates on

Based on the estimation of sender/receiver’'s TCP states
- Packet arrival: sender’s state has already been updated

> Infer the receiver stack update with a new packet
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Scalable Event Management

Each flow subscribes to a set of events

Each flow can change its own set of events over time
> Some flow adds a new event or delete an event

- Some flow changes the event handler for an event

Scalability problem
> How to manage event sets for 100+K concurrent flows?

Observation: the same event sets are shared by mulfiple flows
How to represent the event set for a flowe

How to efficiently find the same event set?
> When a flow updates its set of events?
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Event Dependency Tree

Represents how a UDE is defined

Start from a built-in event as root

New flow

Points to a virtual root that has
a set of dependency trees

ON CONN_NEW_DATA

on ftp event

YouTube_request_event

on_yt_request Event handler
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Update on Event Dependency Tree

s3 adds a new event <e8, f8> to v3

v4 is created with a new event and s3 points to it

event handler
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Efficient Search for an Event Dependency Tree

Each event dependency tree has an ID
o id (virfual root) = XOR sum of hash (event + event handler)

o id (v3) = hash (e11 +f11) @ hash (e10 + f10)

New tfree id after adding or deleting <e, > from 1
- id (1') = id () ® hash (e + )
- Add <e8, 8> to v3¢
- id(v4) = id(v3) @ hash (e8 + f8)
- Remove <el0, f10> from v4?¢
. id (v5) = id(v4) ® hash (e11 +f11)
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Current mOS stack API

Socket creation and traffic filter

int mtcp socket (mctx t mctx, int domain, int type, int protocol);
int mtcp close (mctx t mctx, int sock);
int mtcp bind monitor filter (mctx t mctx, int sock, monitor filter t ft);

User-defined event management

event t mtcp _define event(event t ev, FILTER filt);

int mtcp register callback (mctx t mctx, int sock, event t ev, int hook, CALLBACK cb);
Per-flow user-level context management

void * mtcp_get uctx(mctx t mctx, int sock);

void mtcp_set uctx (mctx t mctx, int sock, void *uctx);

Flow data reading

ssize t mtcp_peek (mctx t mctx, int sock, int side, char *buf, size t len);

ssize_ t mtcp_ppeek (mctx t mctx, int sock, int side, char *buf, size t count, off t
seq off);

mOS networking stack DPDK SUMMIT 2016




Current mOS stack API

Packet information retrieval and modification

int mtcp _getlastpkt (mctx t mctx, int sock, int side, struct pkt info *pinfo);

int mtcp_setlastpkt (mctx t mctx, int sock, int side, off t offset, byte *data, uintl6 t
datalen, int option);

Flow information retrieval and flow attribute modification

int mtcp_getsockopt (mctx t mctx, int sock, int 1, int name, void *val, socklen t *len);
int mtcp_setsockopt (mctx t mctx, int sock, int 1, int name, void *val, socklen t len);
Retrieve end-node IP addresses

int mtcp_getpeername (mctx t mctx, int sock, struct sockaddr *addr, socklen t *addrlen);
Per-thread context management

mctx t mtcp create context (int cpu);

int mtcp_destroy context (mctx t mctx);
Initialization
int mtcp_init (const char *mos conf fname);
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Fine-grained Resource Allocation

Not all middleboxes require full features
- Some middleboxes do not require flow reassembly

- Some middleboxes monitor only client-side data
- No more monitoring after handling certain events

Fine-control resource consumption
> Disable flow reassembly but keep only metadata
- Enable flow monitoring for one side
- Stop flow monitoring in the middle
> Per-flow manipulation with setsockopt()

// disabling receive buffers for both client and server stacks
int zero = 0;
if (! (config monitor side & MOS SIDE CLI))
mtcp_setsockopt (mctx, sock, SOL_MONSOCKET, MOS_ CLIBUF, &zero, sizeof (zero));
i1f (! (config monitor side & MOS SIDE SVR))
mtcp_setsockopt (mctx, sock, SOL_MONSOCKET, MOS_SVRBUF, &zero, sizeof (zero));
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mOS Networking Stack Implementation

Per-thread library TCP stack
o ~26K lines of C code (ITCP: ~11K lines)
> Based on mTCP user level TCP stack [NSDI ‘14]
o Exploits parallelism on multicore systems

User-defined event implementation
- Designed to scale to arbitrary number of events
> |dentical events are automatically shared by multiple flows

Applications ported to mOS: ~9x code line reduction

Application | Modified | _SLOC

Snort 79,889 HTTP/TCP inspection

nDPI 765 25,483 Stateful session management

PRADS 615 10,848 Stateful session management

Abacus - 4,091—486 Detect out-of-order packet retransmission
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Evaluation: Experiment Setup

Operating as in-line mode: clients & mOS applications < servers

MOS applications with mQOS stream sockets
> Flow management and forwarding packets by their flows

o 2 X Intel E5-2690 (16 cores, 2.9 GHz)
> 20 MB L3 cache size, 132 GB RAM
o 6 x 10 Gbps NICs

Six pairs of clients and servers: 60 Gbps max
o Intel E3-1220 v3 (4 cores, 3.1 GHz)

> 8 MB L3 cache size
> 16 GB RAM
> 1 x 10 Gbps NIC per machine
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Performance Scalability on Multicores

= File download traffic with 192,000 concurrent flows

« Each flow downloads an X-byte content in one TCP connection
A new flow is spawned when a flow terminates

= Two simple applications
«  Counting packets per flow (packet arrival event)
« Searching for a string in flow reassembled data (full flow reassembly & DPI)

60 5303 J64B file [@8KBfile
— 50
g_ 42.46
o 40
=

30
'?o 22.84 21.7
g 20 16.66
rE 11.63

10 4.07 5.02 4.5

1.42 123 32
0 I— I—
1 4 16 1 4 16

(# of CPU cores)
Counting packets Searching for a string

mOS networking stack DPDK SUMMIT 2016




Latency Overhead by mOS Applications

— 250 [0 64B file M 8KB file
El
GE) 200 191.9 193.2
=
-% 150 76us
g_ 117.4
S 100 93.8 93.5
3 >8.4 35us l
w 50

0

Direct connection Counting packets Searching for a string
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Event Management Performance

40.0 37.2 36.4 36.3 37.4 36.3
= 33.8 32.2
o 28.5
& 30.0 4.4
9 : 18.9
= 20.0
o
'En 10.0 [1 Naive O mOS
3 0.0 T |
g o
— 4 8 16 32 64

# of event nodes in an invocation forest

192,000 concurrent flows downloading large files

MOS application searches for a string, dynamically adds a new event
Increases the number of events per flow (4 to 64)

mMOS improves the performance by 3.5 to 17.3 Gbps
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Performance Under Selective Resource Consumption

60 56.68 9.97
51.9
>0 46.43
40 39.22
A 3418 A7
o]
)
+ 29.6
3 30
@
o 23.22
- 19 67 — O full flow management
20 -
O w/o client buf management
@ w/o buf management
10 B w/o client side
B w/o client side, w/o server buf mgmt.
0 T T T T T
64 256 1K 4K 16K

File size (B)
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Real Application Performance

Application original + pcap |original + DPDK

Snort-AC 0.57 Gbps 8.18 Ghps 9.17 Gbps
Snort-DFC 0.82 Ghps 14.42 Gbps 15.21 Gbps
nDPIReader 0.66 Gbps 28.92 Gbps 28.87 Gbps
PRADS 0.42 Gbps 2.03 Ghps 1.90 Gbps

Workload: real LTE packet trace (~67 GB)

4.5x ~ 28.9x performance improvement

Mostly due to multi-core aware packet processing (DPDK)
MOS brings code modularity and correct flow management
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Conclusion

Current middlebox development suffers from
> Lack of modularity
> Lack of readability
> Lack of maintainability

Solution: reusable networking stack for middleboxes

mMOS stack: abstraction for flow management
> Programming abstraction with socket-based API

> Event-driven middlebox processing
o Efficient resource usage with dynamic resource compaosition
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mQOS Stack Is Open-Sourced

Public release of mOS stack/API at github
o https://github.com/ndsl-kaist/mOS-networking-stack

# mOS Documentation

mOS online manual
o http://mos.kaist.edu/guide/

mOS Documentation
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https://github.com/ndsl-kaist/mOS-networking-stack
http://mos.kaist.edu/guide/

hank you!

MOS project page
http://mos.kaist.edu/
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http://mos.kaist.edu/

Backup Slides: Sample mQOS applications
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midstat:
netstats as middlebox




netstat

A command-line tool that displays network statistics
> Active TCP/UDP connections statistics (both outgoing & incoming)

ygmoon{@tree3: ~

Fgmﬂﬂn@trEE3:~S netstat
Active Internet connections (w/o servers)

Proto Recv-(Q Send-(Q Local Address Foreign Address State
5 160 tree3:2222 143.248.129.48:50413 ESTABLISHED
§ @ tree3:2222 143.248.129.48:50412 ESTABLISHED

Prints out the stafistics of end-host kernel networking stack
(Available on Linux, BSD, Solaris, and Windows)
> Used for finding problems in network or measuring traffic amount
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midstat

A monitoring tool that tracks flow statistics of each side
of ongoing connections
Shows IP addresses, port numbers, and TCP states

Proto CPU|Client Address Client State Server Address Server State
] 10.0.0.12:39476 LAST_ACK 10.0.0.10:80 CLOSING

10.0.0.12:42148 CLOSE_WAIT 10.0.0.10:80 FIN WAIT_ 1
10.0.0.12:3420 LAST_ACK 10.0.0.10:80 FIN WAIT_ 1
16.0.0.12:17591 CLOSE_WAIT 10.0.0.10:80 FIN WAIT_ 1
10.0.0.12:22541 CLOSE_WAIT 10.0.0.10:80 FIN WAIT_ 1
10.0.0.12:22784 CLOSE_WAIT 10.0.0.10:80 FIN WAIT 1
16.0.0.12:27281 CLOSE_WAIT 10.0.0.10:80 FIN WAIT_ 1
16.0.0.12:33422 CLOSE_WAIT 106.0.0.10:80 FIN WAIT_ 1
10.0.0.12:1032 CLOSE_WAIT 10.0.0.10:80 FIN WAIT 1
10.0.0.12:37428 LAST_ACK 10.0.0.10:80 CLOSING

and 4187 more flows ---

i)
3]
)
3]
3]
)
)
i)
3]
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Implementing midstat without mOS

How to track the TCP states of both server and cliente
> Without mQOS, the app should maintain complex TCP state machines

recv: SYN
send: SYN,ACK

SYN_RCVD

Starting Point

appl: passive open ~,
send:<nothing= ~,

Y

|

|

|

: |
LISTEN 2ppl. actwe open i
i

|

I

|

passive open I

recv: SYN

"""""" send: SYNACK ™ =" ="~~~ ‘or timeout~ "~ %
active open i
i recv: ACK recv: SYN,ACK |
. send: <nothing> send: ACK ;
I
o EIN ESTABLlSHED ;
! appl: clase recv: FIN |
: send:FIN send:ACK passive close i
; = CLOSE WAIT i
v _ i
FIN_WAIT_1 l- e N ="-»| CLOSING sooliclose i
! send:FIN |
recv: ACK recv: FINACK  racy: AGK racv: ACK |
send: <noth|ng> send: ACK send:<nothing> LAST_ACK |~ coidiinotfings i
recv: FIN
FIN_WAIT 2 I_ o ack=""" TIMEWAIT ' =='=imimimimimimimimimimim i, N

active close

=== » normal transitions for client
— normal transitions for server

FIN_WAIT_2 '—

active close

condACK= —  TIME WAIT

Starting Point

CLOSED ——————————————————————————————————
i I
appl: passive open ~, i

send:<nothing> N\
L S !
a‘ppl: active open !
recv: SYN send:SYN !
send: SYN,ACK hod 1
- N, 1

<
- recv: RST N ]
SYN RCVD | .c.ccieio o recvi SYN appl:close 1
- send: SYN,ACK or timeout 1
active open i
: recv: ACK recv: SYN.ACK '
. send: <nothing> send: ACK ;
|

sen GFIN ESTABLISHED ;
appl: close” recv: FIN i
' send:FIN send:ACK passive close i
| .
i el CLOSE_WAIT I
Y recv: FIN !
FIN_WAIT_ 1 [— ‘send:ack ™ "™ CLOSING appl: close |
! send:FIN 1
recv: ACK reov: FINACK  rgey: ACK recv: ACK |
send: <noth|ng> send: ACK send:<nothing> LAST_ACK ‘send-<nothing> i
4 i !
AN mrrrr e SO X

——— » normal transitions for client
—— normal transitions for server
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Implementing midstat with mOS

MQOS tracks the TCP states of both client- and server-side
> Notifies the application when there is any TCP state update

Application

Register for MOS_ON_TCP_STATE CHANGE event

Client |+

Client
Server

mOS
ESTABLISHED

ESTABLISHED

> | Server

mOS networking stack
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Implementing midstat with mOS

MQOS tracks the TCP states of both client- and server-side
> Notifies the application when there is any TCP state update

Application

MOS_ON_TCP_STATE_CHANGE

Client

FIN

Client
Server

mOS

FIN_WAIT 1

CLOSE_WAIT

Server

mOS networking stack
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midstat Demo

Test environment

treel treed treed
Server midstat Client
Running a web server Download 100KB files
(nginx) at port 80 (using ab)
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mHalfback
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Halfback

A transport-layer scheme designed for optimizing the flow completion
time (FCT) [CONEXT "15]

o Skips the TCP slow start phase to pace up transmission rate at start
> Performs proactive retransmission for fast packet loss recovery

Phase 1. aggressive startup Phase 2. proactive retransmission

Receiver

Sender
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mHaltback Proxy

We design mHalfback, a middlebox for fast packet loss recovery
o Transparently reduces the FCT without modifying end-host stacks

The main logic of mHalfback
> 1) For each TCP data packet arrival, hold a copy of the packet

Receiver

mHalfloack

naer
>ende 1 2 3 45
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mHalfback Proxy

We design mHalfback, a middlebox for fast packet loss recovery
o Transparently reduces the FCT without modifying end-host stacks

The main logic of mHalfback
- 2) When an ACK packet comes from the receiver, do retransmission

Receiver

mHalfloack

naer
>ende 1 2 3 45
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Implementing mHaltback with mOS

How to perform proactive retransmissione

mtcp getlastpkt () mtcp sendpkt ()
[ EnqueueTCPDataPacket(); ] RemoveACKedPackets();
ProactiveRetransmit();

If (payloadlen > 0) If (ACK packet)

From SERVER From CLIENT

MOS_ON_PKT_IN
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mHalfback Demo

= Test environment (A) RTT = 60ms

15Mbps i
Loss ratio = =

1%, 2%, 5%

Server mHalfback Client
— 1300 T, (Diree .
= Results E, 1250 = ae=-2% (Direct) ’,.'

o =@=-5% (Direct) W
= == 1% (via Halfback) _e””  _-A
P - " -
- 1000 o0y (via Halfback) . _,..-"‘"
_E - .-r‘ .-_.u..--'n
o 750
=
ES 500
2 250
[

0

0 20 40 60 80 100 120 140 160 180 200
Flow Size (KB)
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Operation Scenarios of mOS Applications

mOS app Application logic

Event handler (Callback) Packet/flow-level events
I mOS networking API

Packet info || TCPstate || TCPrecv buf| «-- Packet/flow abstraction

MOS stack | sender TCP stack *:.. Receiver TCP stack | TCP flow processing

mOS monitor mOS monitor
(ESY) (inline)
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Cellular Data Accounting with Events

Incoming

packet el: packet retransmission event
e (&,)
i—/‘@ S FTeake: see if el has a packet with malicious content

o Called a filter function (boolean function)
|:TFAKE
e3: fake retransmission event
@ o Triggered when el is raised && FT returns true
f, f, f,: action for handling e3

o Called an event handler for e3

e2: new data event (no retransmission)

f,: action for handling €2

Developer: defines a custom event (e3) and provides an action
System: provides regular events (el, e2) and executes event handlers
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