
Mbuf Changes

Olivier Matz

DPDK Summit Userspace - Dublin- 2016

You are here

Plan

Some recent changes (16.07) in mbuf and
mempool

What’s new in 16.11?
 Ideas for next versions

16.07: mempool memory allocation

Allow allocation of large mempools in non-
contiguous virtual memory

New API with less arguments (create,
populate, obj_init, …)

Freeing a mempool is now possible
Mempool outside hugepage memory

16.07: mempool handlers

Previously, a mempool stored its objects in
a ring

New API to register a pool handler
No modification of the per-core cache
Opens the door for hardware-assisted

mempool handler

16.07: user-owned cache

A mempool object embeds a per-core cache
(=per eal thread)

New API to use a specific cache when
enqueing/dequeing objects in a mempool

Needed to efficiently use a mempool from
non-eal threads

Note: ring still requires that threads are not
preemptable

16.07: other mbuf changes

Raw mbuf allocation becomes public
New Rx flag for stripped Vlan
Prefetch helpers

16.11: rx checksum flags

Previously, there was only one flag
“checksum bad”

Add a new flag, allowing to express:
– Checksum bad
– Checksum good
– Checksum unknown
– Checksum not present but packet valid

(enables offload in virtual drivers)

16.11: software packet type parser

Parse the network headers in packet data
and return a packet type

Provide a reference implementation to
compare with drivers

Needed for virtio Rx offload

16.11: other mbuf changes

API to reset the headroom of a packet
Safe API to read the content of a packet
New Tx flags for offload in tunnels (TSO or

checksum)

Mbuf structure
reorganisation

Discuss: adding a new field in mbuf

The mbuf is a core dpdk structure, used to
carry network packets

Limit/bulk its modification
How to decide which features should be in

the first part (Rx)?
Can we extend the mbuf ad infinitum?
Example: timestamp

Discuss: structure reordering

The mbuf structure is split in 2 part (Rx, Tx)
and room in first part is tight

 In PMD Rx functions, it is needed to set
m→next to NULL, which is in the Tx part

m→rearm marker is not aligned, which costs
on some architectures

m→port and m→nb_segs are 8 bits wide
 Is m→port needed?

Discuss: raw mbuf alloc/free + refcnt

The __rte_mbuf_raw_free() function is not
public while the alloc function is

The raw alloc sets refcnt to 1, free expects
refcnt=0

A solution would be to have m→refcnt to 1
for mbuf in the pool, restoring symmetry
and allowing bulk allocation/free

Same for m→next which could be NULL

Discuss: new mbuf structure proposal

Mbuf pool handler

Discuss: default mbuf pool handler

Currently, the default mbuf pool handler
“ring_mp_mc”, set at compilation time

Hardware-assisted pools are coming
Hardware have constraints/capabilities
But application/user decide
Add params to rte_pktmbuf_pool_create()?
Global mbuf lib parameter?

Discuss: mempool stack handler

By default, the mempool uses a ring (FIFO)
to store the objects

Using a LIFO may provide better
performance to avoid cache eviction

There is already a stack handler, but it
could be enhanced to be lockless

Mbuf with external data buffer

Discuss: mbuf with external buffer (1)

Currently, a mbuf embeds its data (direct),
or references another mbuf (indirect)

 It could make sense to have mbuf
referencing external memory

Use cases: virtual drivers, server
applications, storage, traffic generators

Discuss: mbuf with external buffer (2)

Constraints: known paddr, physically
contiguous, non-swappable

A callback is required when the mbuf is
freed

Reference counting is managed by the
application

Discuss: mbuf with external buffer

Offload

Currently in DPDK, to do TSO, one must:
– Set PKT_TX_TCP_SEG flag

– Set PKT_TX_IPV4 or PKT_TX_IPV6

– Set IP checksum to 0 (IPv4)

– Fill l2_len, l3_len, l4_len, tso_segz

– Set the pseudo header checksum without taking ip length in account

Need to fix the packet in case of virtio
A real phdr checksum makes more sense,

but it just moves the problem in other PMDs
The tx_prep API may help here

Discuss: TSO API and phdr checksum

Discuss: unify Rx/Tx offload fields

 In Rx, we have packet_type
– Layer type for: l2, l3, l4, tunnel, inner_l2, inner_l3, inner_l4

– Flags (checksums, vlan, ...)

 In Tx, we have lengths:
– Lengths for: l2, l3, tso_segsz, outer_l2, outer_l3

– Flags (checksums, TSO, vlan, ...)

 Is it possible to unify this information in one
struct? (lengths are useful on Rx side)

Misc

Discuss: namespace

Flags are not prefixed with RTE_
Example: PKT_RX_VLAN_PKT
This is something that could be changed,

while keeping the compat during some
versions

Discuss: constant mbuf headroom

The amount of headroom in a mbuf is fixed
at compilation time:
RTE_PKTMBUF_HEADROOM=128

Depending on use cases, it can be either
too large or too small

Should we make it configurable at run-time?
Or add rte_mbuf_reserve(headroom)?

Questions?
Olivier Matz

olivier.matz@6wind.com

Appendix: mbuf

Appendix: mbuf chain

Appendix: mbuf clone

Appendix: mbuf structure

	Slide 1
	<Title>
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Questions?
	Slide 29
	Slide 30
	Slide 31
	Slide 32

