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Plan

Some recent changes (16.07) in mbuf and 
mempool

What’s new in 16.11?
 Ideas for next versions



16.07: mempool memory allocation

Allow allocation of large mempools in non-
contiguous virtual memory

New API with less arguments (create, 
populate, obj_init, …)

Freeing a mempool is now possible
Mempool outside hugepage memory



16.07: mempool handlers

Previously, a mempool stored its objects in 
a ring

New API to register a pool handler
No modification of the  per-core cache
Opens the door for hardware-assisted 

mempool handler



16.07: user-owned cache

A mempool object embeds a per-core cache 
(=per eal thread)

New API to use a specific cache when 
enqueing/dequeing objects in a mempool

Needed to efficiently use a mempool from 
non-eal threads

Note: ring still requires that threads are not 
preemptable



16.07: other mbuf changes

Raw mbuf allocation becomes public
New Rx flag for stripped Vlan
Prefetch helpers



16.11: rx checksum flags

Previously, there was only one flag 
“checksum bad”

Add a new flag, allowing to express:
– Checksum bad
– Checksum good
– Checksum unknown
– Checksum not present but packet valid 

(enables offload in virtual drivers)



16.11: software packet type parser

Parse the network headers in packet data 
and return a packet type

Provide a reference implementation to 
compare with drivers

Needed for virtio Rx offload



16.11: other mbuf changes

API to reset the headroom of a packet
Safe API to read the content of a packet
New Tx flags for offload in tunnels (TSO or 

checksum)



Mbuf structure 
reorganisation



Discuss: adding a new field in mbuf

The mbuf is a core dpdk structure, used to 
carry network packets

Limit/bulk its modification
How to decide which features should be in 

the first part (Rx)?
Can we extend the mbuf ad infinitum?
Example: timestamp



Discuss: structure reordering

The mbuf structure is split in 2 part (Rx, Tx) 
and room in first part is tight

 In PMD Rx functions, it is needed to set 
m→next to NULL, which is in the Tx part

m→rearm marker is not aligned, which costs 
on some architectures

m→port and m→nb_segs are 8 bits wide
 Is m→port needed?



Discuss: raw mbuf alloc/free + refcnt

The __rte_mbuf_raw_free() function is not 
public while the alloc function is

The raw alloc sets refcnt to 1, free expects 
refcnt=0

A solution would be to have m→refcnt to 1 
for mbuf in the pool, restoring symmetry 
and allowing bulk allocation/free

Same for m→next which could be NULL



Discuss: new mbuf structure proposal



Mbuf pool handler



Discuss: default mbuf pool handler 

Currently, the default mbuf pool handler 
“ring_mp_mc”, set at compilation time

Hardware-assisted pools are coming
Hardware have constraints/capabilities
But application/user decide
Add params to rte_pktmbuf_pool_create()?
Global mbuf lib parameter?



Discuss: mempool stack handler

By default, the mempool uses a ring (FIFO) 
to store the objects

Using a LIFO may provide better 
performance to avoid cache eviction

There is already a stack handler, but it 
could be enhanced to be lockless



Mbuf with external data buffer



Discuss: mbuf with external buffer (1)

Currently, a mbuf embeds its data (direct), 
or references another mbuf (indirect)

 It could make sense to have mbuf 
referencing external memory

Use cases: virtual drivers, server 
applications, storage, traffic generators



Discuss: mbuf with external buffer (2)

Constraints: known paddr, physically 
contiguous, non-swappable

A callback is required when the mbuf is 
freed

Reference counting is managed by the 
application



Discuss: mbuf with external buffer



Offload



Currently in DPDK, to do TSO, one must:
– Set PKT_TX_TCP_SEG flag

– Set PKT_TX_IPV4 or PKT_TX_IPV6

– Set IP checksum to 0 (IPv4)

– Fill l2_len, l3_len, l4_len, tso_segz

– Set the pseudo header checksum without taking ip length in account

Need to fix the packet in case of virtio
A real phdr checksum makes more sense, 

but it just moves the problem in other PMDs
The tx_prep API may help here

Discuss: TSO API and phdr checksum



Discuss: unify Rx/Tx offload fields

 In Rx, we have packet_type
– Layer type for: l2, l3, l4, tunnel, inner_l2, inner_l3, inner_l4

– Flags (checksums, vlan, ...)

 In Tx, we have lengths:
– Lengths for: l2, l3, tso_segsz, outer_l2, outer_l3

– Flags (checksums, TSO, vlan, ...)

 Is it possible to unify this information in one 
struct? (lengths are useful on Rx side)



Misc



Discuss: namespace

Flags are not prefixed with RTE_
Example: PKT_RX_VLAN_PKT
This is something that could be changed, 

while keeping the compat during some 
versions



Discuss: constant mbuf headroom

The amount of headroom in a mbuf is fixed 
at compilation time: 
RTE_PKTMBUF_HEADROOM=128

Depending on use cases, it can be either 
too large or too small

Should we make it configurable at run-time?
Or add rte_mbuf_reserve(headroom)?



Questions?
Olivier Matz

olivier.matz@6wind.com



Appendix: mbuf



Appendix: mbuf chain



Appendix: mbuf clone



Appendix: mbuf structure
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