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Background & Motivations

 Open vSwitch (OvS): key connectivity component in cloud/datacenter to 
provide network of virtualized machines. E.g. OpenStack, and 
OpenNebula.

 Line rate increases (10G40G100G): OvS is hard to keep up.

 DPDK accelerated OvS (OvS-DPDK): known to have higher performance. 
But why?

 We explain why OvS-DPDK has better performance over vanilla OvS from 
computer architecture’s perspective. E.g. cache behaviors, context 
switches, etc.



Introduction: OvS Application Scenario

 A typical application scenario of OvS in cloud/datacenter.
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 Two communication scenarios:

 VM  vNIC VM (Same host)

 VM  pNIC VM (Different hosts)



Introduction: OvS, OvS-DPDK I/O Comparison

 OvS data path:  OvS-DPDK data path:
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Introduction: Memory Hierarchy

 For a typical Intel Skylake processor
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Parameters Value

L1 Peak Bandwidth 

(bytes/cycle)

2x32 Load

1x32 Store

L2 Data Access (cycles) 12

L2 Peak Bandwidth 

(bytes/cycle)

64

Shared L3 Access 

(cycles)

44
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32

Memory Access (cycles) ~ 140 (for 2.0 

GHz)

Source: Intel 64 and IA-32 Architectures: 

Optimization Reference Manual



Experiment Setup Overview
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Test Platform Specifications

 Hardware - Intel SuperMicro Server

 Intel Xeon D-1540, 8 Cores @ 2.0 GHz.

 L1i: 32 KB, L1d: 32 KB, L2: 256 KB, LLC: 12 MB, Memory: 64 GB.

 NIC: Intel 82599ES 10-Gigabit SFI/SFP+

 OS: Ubuntu 16.04; OvS version: 2.5.0; DPDK version: 16.04

 All the VMs are created by KVM and emulated by QEMU. 

 Run Iperf (version 2.0.5) test on the provided environment.

 Processor performance profiling tools:

 Linux Perf version: 4.4.13

 Intel VTune Amplifier XE version: 2016 Update 4



Iperf Test Setup

 Experiment 1 (VM-OvS-VM)

 On VM0 (Iperf Server)

 sudo iperf -s -w 512k -l 128k -p 1005 | grep SUM

 On VM1 (Iperf Client)

 iperf -c 10.0.0.1 -p 1005 -w 512k -l 128k -i2 –t60 -P4 | grep SUM

 Experiment 2 (VM-OvSDPDK-VM)

 Same as experiment 1, but use OvS-DPDK

 Experiment 3 (Host-OvS-VM)

 Same as experiment 1, but use another host machine as server

 Experiment 4 (Host-OvSDPDK-VM)

 Same as experiment 3, but use OvS-DPDK.



Evaluation 1

 Throughput and IPC comparison for 4 different scenarios:

• 5.5x throughput increase 
for VM2VM scenario

• 3x throughput increase 
for the VM2HOST 
scenario

• OvS-DPDK scenarios 
render better IPC (ideal 
IPC is 4.0 for 4-issue 
arch) with pipeline.



Evaluation 2

 Cache behavior comparison:

• OvS-DPDK achieves 7x 
and 8x more cache 
references for VM2VM 
and VM2HOST scenarios 
respectively.

• L1 data cache miss rate 
is less for both scenarios 
with OvS-DPDK. Cache 
miss reduced by 50% for 
the VM2HOST case with 
OvSDPDK.



Evaluation 3

 Last level cache and table lookaside buffer (TLB) behaviors

• Last level cache has 3 ~ 6 
times more accesses with 
OvS-DPDK than with 
vanilla OvS.

• TLB miss rate is near 
perfect 0.0 % if using OvS-
DPDK.



Across Socket Communication Between VMs

 Modern datacenter racks employ multi-socket platform design to scale 
up performance with the power budget.

 How OvS and OvS-DPDK behave on such multi-socket platform?

 Our multi-socket test platform:
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• 2-socket server

• 2 Intel Xeon E5-2643 v3 Processors, 6

cores @ 3.4 GHz each socket

• L1i: 32 KB; L1d: 32 KB; L2: 256 KB

• LLC (L3): 20 MB.
• NUMA Mem0: 8.0 GB; Mem1: 16 GB



Across Socket Experiment Setup

 Within/Across socket with either OvS or OvS-DPDK: 4 different 
configurations.

 Run Iperf benchmark for each configuration.
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Evaluation 4

 Throughput comparison and cache behaviors.

• Throughput difference:
• OvS: 1.33x if with 

same socket
• OvS-DPDK: 1.1x if 

with same socket
• LLC references: >10% 

less LLC references if 
running VMs across 
different socket.



Evaluation 5

 Context switches comparison.

• If comparing OvS vs. OvS-DPDK:
• Context switches drop dramatically if 

using OvS-DPDK
• If comparing Same/Diff socket:

• Not big difference
• Across socket communication is not 

the root cause of context switches



Conclusion

 This work conducts a thorough performance analysis of vanilla 
OvS and OvS-DPDK from a computer architect’s perspective.

 OvS-DPDK improves system performance by:

 Increasing IPC, cache references;

Decreasing cache misses (software prefetching), TLB misses (huge 
pages), and context switches (user-space driver).

 A multi-socket platform may lead to:

 Lower system throughput and less LLC accesses.

Across socket, however, is not the root cause of context switches.
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