
Understanding The Performance
of DPDK as a Computer Architect

DPDK US Summit - San Jose - 2016

XIAOBAN WU *, PEILONG LI *, YAN LUO *, LIANG-
MIN (LARRY) WANG +, MARC PEPIN +, AND
JOHN MORGAN +

* UNIVERSITY OF MASSACHUSETTS LOWELL

+ INTEL CORPORATION

Outlines

Background & Motivations

 Introductions to OvS arch and memory hierarchy

Experiment setup and test methodology

OvS versus OvS-DPDK performance evaluation

Multi-socket platform impact analysis

Conclusion

Background & Motivations

 Open vSwitch (OvS): key connectivity component in cloud/datacenter to
provide network of virtualized machines. E.g. OpenStack, and
OpenNebula.

 Line rate increases (10G40G100G): OvS is hard to keep up.

 DPDK accelerated OvS (OvS-DPDK): known to have higher performance.
But why?

 We explain why OvS-DPDK has better performance over vanilla OvS from
computer architecture’s perspective. E.g. cache behaviors, context
switches, etc.

Introduction: OvS Application Scenario

 A typical application scenario of OvS in cloud/datacenter.

Virtual
Machine

Open vSwitch

Virtual
Machine

Virtual
Machine

vNIC vNIC vNIC

Virtual
Machine

Open vSwitch

Virtual
Machine

vNIC vNIC

pNIC pNIC pNIC

Physical Switches, etc.

Physical Rack Physical Rack

Open vSwitch

vhost vhost

virtio-net
driver

virtio-net
driver

eth0 eth1

Virtual Machine (QEMU Process)

tap tap

Kernel Space
User Space

Physical Interfaces

 Two communication scenarios:

 VM vNIC VM (Same host)

 VM pNIC VM (Different hosts)

Introduction: OvS, OvS-DPDK I/O Comparison

 OvS data path: OvS-DPDK data path:

ovs_mod.ko

vNIC

Virtual Machine

Kernel

User

ovs-vswitchd

If rule is not
cached in kernel

Data Path

Netlink vNIC-
DPDK

Virtual Machine

ovs-vswitchd

PMD Drivers

IVSHM

DPDK vSwitch
Forwarding

pNIC

User

Kernel

Data
Path

Introduction: Memory Hierarchy

 For a typical Intel Skylake processor

Core
0

L1

L2

LLC

Core
1

L1

L2

Core
N-1

L1

L2

Socket 0

Core
0

L1

L2

LLC

Core
1

L1

L2

Core
N-1

L1

L2

Socket k

Memory 0 Memory k

QPI

Parameters Value

L1 Peak Bandwidth

(bytes/cycle)

2x32 Load

1x32 Store

L2 Data Access (cycles) 12

L2 Peak Bandwidth

(bytes/cycle)

64

Shared L3 Access

(cycles)

44

L3 Peak Bandwidth

(bytes/cycle)

32

Memory Access (cycles) ~ 140 (for 2.0

GHz)

Source: Intel 64 and IA-32 Architectures:

Optimization Reference Manual

Experiment Setup Overview

 Guest-Guest
(VM2VM)

 Guest-Host
(VM2Host)

VM 0 VM 1

OVS

iperf Server

Host

iperf Client

Experiment 1 Experiment 2

Guest Guest

vNIC vNIC

VM 0 VM 1

OVS-DPDK

iperf Server

Host

iperf ClientGuest Guest

vNIC vNIC

VM 0

OVS

Host

Experiment 3

Host

pNIC iperf Server

vNIC

iperf ClientGuest

Experiment 4

pNIC

VM 0

OVS-
DPDK

Host Host

pNIC iperf Server

vNIC

iperf ClientGuest

pNIC

Test Platform Specifications

 Hardware - Intel SuperMicro Server

 Intel Xeon D-1540, 8 Cores @ 2.0 GHz.

 L1i: 32 KB, L1d: 32 KB, L2: 256 KB, LLC: 12 MB, Memory: 64 GB.

 NIC: Intel 82599ES 10-Gigabit SFI/SFP+

 OS: Ubuntu 16.04; OvS version: 2.5.0; DPDK version: 16.04

 All the VMs are created by KVM and emulated by QEMU.

 Run Iperf (version 2.0.5) test on the provided environment.

 Processor performance profiling tools:

 Linux Perf version: 4.4.13

 Intel VTune Amplifier XE version: 2016 Update 4

Iperf Test Setup

 Experiment 1 (VM-OvS-VM)

 On VM0 (Iperf Server)

 sudo iperf -s -w 512k -l 128k -p 1005 | grep SUM

 On VM1 (Iperf Client)

 iperf -c 10.0.0.1 -p 1005 -w 512k -l 128k -i2 –t60 -P4 | grep SUM

 Experiment 2 (VM-OvSDPDK-VM)

 Same as experiment 1, but use OvS-DPDK

 Experiment 3 (Host-OvS-VM)

 Same as experiment 1, but use another host machine as server

 Experiment 4 (Host-OvSDPDK-VM)

 Same as experiment 3, but use OvS-DPDK.

Evaluation 1

 Throughput and IPC comparison for 4 different scenarios:

• 5.5x throughput increase
for VM2VM scenario

• 3x throughput increase
for the VM2HOST
scenario

• OvS-DPDK scenarios
render better IPC (ideal
IPC is 4.0 for 4-issue
arch) with pipeline.

Evaluation 2

 Cache behavior comparison:

• OvS-DPDK achieves 7x
and 8x more cache
references for VM2VM
and VM2HOST scenarios
respectively.

• L1 data cache miss rate
is less for both scenarios
with OvS-DPDK. Cache
miss reduced by 50% for
the VM2HOST case with
OvSDPDK.

Evaluation 3

 Last level cache and table lookaside buffer (TLB) behaviors

• Last level cache has 3 ~ 6
times more accesses with
OvS-DPDK than with
vanilla OvS.

• TLB miss rate is near
perfect 0.0 % if using OvS-
DPDK.

Across Socket Communication Between VMs

 Modern datacenter racks employ multi-socket platform design to scale
up performance with the power budget.

 How OvS and OvS-DPDK behave on such multi-socket platform?

 Our multi-socket test platform:

Core
0

L1

L2

LLC

Core
1

L1

L2

Core
5

L1

L2

Socket 0

Core
6

L1

L2

LLC

Core
7

L1

L2

Core
11

L1

L2

Socket 1

NUMA Memory 0 NUMA Memory 1

QPI

• 2-socket server

• 2 Intel Xeon E5-2643 v3 Processors, 6

cores @ 3.4 GHz each socket

• L1i: 32 KB; L1d: 32 KB; L2: 256 KB

• LLC (L3): 20 MB.
• NUMA Mem0: 8.0 GB; Mem1: 16 GB

Across Socket Experiment Setup

 Within/Across socket with either OvS or OvS-DPDK: 4 different
configurations.

 Run Iperf benchmark for each configuration.

VM 0 VM 1

OvS or
OvS-DPDK

iperf Server

Host

iperf ClientGuest Guest

vNIC vNIC

VM 0 VM 1

OvS or
OvS-DPDK

iperf Server

Host

iperf ClientGuest Guest

vNIC vNIC

Socket 0 Socket 0 Socket 1

Evaluation 4

 Throughput comparison and cache behaviors.

• Throughput difference:
• OvS: 1.33x if with

same socket
• OvS-DPDK: 1.1x if

with same socket
• LLC references: >10%

less LLC references if
running VMs across
different socket.

Evaluation 5

 Context switches comparison.

• If comparing OvS vs. OvS-DPDK:
• Context switches drop dramatically if

using OvS-DPDK
• If comparing Same/Diff socket:

• Not big difference
• Across socket communication is not

the root cause of context switches

Conclusion

 This work conducts a thorough performance analysis of vanilla
OvS and OvS-DPDK from a computer architect’s perspective.

 OvS-DPDK improves system performance by:

 Increasing IPC, cache references;

Decreasing cache misses (software prefetching), TLB misses (huge
pages), and context switches (user-space driver).

 A multi-socket platform may lead to:

 Lower system throughput and less LLC accesses.

Across socket, however, is not the root cause of context switches.

Questions?

Dr. Peilong Li

Peilong_Li@uml.edu

UMass Lowell ACANETS Lab

http://acanets.uml.edu

mailto:Peilong_Li@uml.edu
mailto:john.mcnamara@intel.com
mailto:john.mcnamara@intel.com

