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.Agenda

Brief description of the types of networking paradigms
typically encountered in database/cluster applications

Some experiments in trying to use DPDK in these
paradigms.

Latency measurements, software-engineering
considerations

Conclusions from these experiments
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.Typical Oracle/DB Problem Space

 Primarily request/response Transactions

- Multithreaded applications, each application typically
handling multiple descriptors.

* Networking: typically datagram sockets, using BSD
socket based APls

> UDP sockets, or,
> RDS (Reliable Datagram Service) sockets
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. DB Application Network/Socket Mode

- RDS: Reliable Datagram Service

 Application payload is encapsulated in an RDS
header and handed off to some transport that
guarantees reliable, ordered delivery

» Transport can be InfiniBand (bypasses TCP/IP stack),
or TCP/IP/Ethernet.

- UDP based model is similar, but application has to do
extra work to ensure reliable/ordered delivery.
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. Can We Use DPDK To Accelerate This?

- Some services are CPU bound, latency sensitive

- DPDK allows us to read packets directly from the
driver (like IB) and we already have some infra to take
care of guaranteed/ordered delivery, so evaluate
iffhow much latency reduction we can get from DPDK

> |f necessary, we can use our own custom ULP
encapsulation over L4.
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. Using DPDK and KNI?

- DPDK inserts user-space PMDs, so all frames from
that NIC are diverted to uspace

- We only want a subset of flows, we dont want to
implement every IETF/IEEE protocol in our
experiment, so try to use KNI

- Register a receive side callback with the user-space
poll-mode driver to filter out “interesting” flows.
> |Interesting flows will be processed by DB software

> Rest (NFS, SMTP, IP fragments, Routing protocol
packets...) is sent to Linux stack via KNI's “vEthX".
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Observations about this approach

* |t slows down linux TCP/IP stack
> How much penalty to the TCP/IP stack?

 Instrument three different types of RTT and compare
the numbers:

> Direct path to DPDK (igb_uio < PMD <« kni_rx_cb)
> DPDK < FIFO/shmem « linux application
> PF_PACKET « linux application
+ Experiment details: 64 byte sized packet with custom
ethertype (i.e., flow selection by ethertype).

Application on the SUT just reflects packet back by
swapping dmac, smac.
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. Avoiding the penalty for the Linux stack

- Latency estimates:
> Direct path to DPDK- approx (90 us)
> DPDK — FIFO/shmem — linux app (2000 ps)
> PF_PACKET — linux application (150-200 ps)

* High penalty for apps using the linux stack, e.g., NFS,
mail, ssh etc!

- Common practice: traffic bifurcation using SR-I0OV
> http://rhelblog.redhat.com/2015/10/02/
> https://blog.cloudflare.com/kernel-bypass/
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. SR-IOV based traffic bifurcation

* Create a VF for the PCle bus

« Use ethtool to set up a traffic filter to pull out
“Interesting” packets on the VF

- DPDK PMD drivers work with the VF, no penalty for
linux stack

* Non-trivial routing, forwarding, ARP, egress
adjacencies still needs special config -

DPDK Socket

T
Linux
1

NIC
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. Additional Drawbacks..

» Dealing with IP fragmentation/re-assembly:

> Even if we define the flow by the L4 4-tuple, we
have to deal with IP fragments

> This is slow path, we can let the native kernel stack
implementation sort this out for us, but..

> Application can now get packets either via DPDK
path, or from native kernel stack
* In general, the application is reading from muiltiple /O
descriptors

> Network packets from the wire,
> Disk 1/0..

 This is typically done using a select/poll/epoll loop.
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Classic Server Side Paradigm:

while (1) {

select (nfds, fd set, ..):;

/* fd _set may have a mix of TCP, UDP, RDS
* sockets. After select (), multiple fd's
* in the set may be ready
*/
1f (incoming client connection request)

accept () and add new socket to fd set
else { /* incoming data */

Read request;

Send response;

)

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 1



. Mapping this to DPDK?

- Recommendation was to try to use Rx Interrupt
Mechanism: have and wait on a thread per fd,thread
will be woken up when packets arrive.

» Major application rewrite needed to adapt to this?

- DPDK library would be placing constraints on the
application's threading model

> Signal delivery issues for single-threaded
applications.

- examples/netmap_compat: gives a poll()-ish “fake” file
desc with several critical restrictions.

> Perf comparisons of netmap _compat vs native
netmap ongoing.
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CPU utilization in busy-poll mode

» DPDK kni example run (uses syntax supplied with
DPDK package)

# kni -c 0xfO -n 4 — -P -p 0x1 —config “(0, 4, 5)”

- See DPDK documentation for details of what each arg
In this iIncantation means..

* The effect of this set of arguments is that the poll-
mode driver will use CPU 4 for Rx, CPU 5 for Tx.

> CPUs 4 and 5 will be reported 0% idle on mpstat,
even when there is no traffic flowing.

» 100% polling has problems: CPU power limits, PCI
bus overhead
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Conclusions

- DPDK may be ideal for *hot-potato” forwarding use-
cases like ovs, where there are external protocols to
set up the forwarding/switching rules, and DPDK is
only used to accelerate the core forwarding engine.

» For End-System use-cases,
> APls matter. Ease of programmability is important.

> Need to find an efficient way to co-exist with the

existing kernel stack as the fallback for
“uninteresting” (to the application) flows and network

protocols.
> Control plane considerations: Observability,

Configuration
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Backup Slides
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Other user pleasers

- Existing “ethtool” application does not give visibility
into offloads, detailed driver state..

- Better examples showing how to use h/w offload
features
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» "DPDK Performance : How not to just do a demo with
DPDK” from Netdev 0.1

> http://www.slideshare.net/shemminger/dpdk-
performance
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. Managing file descriptors with DPDK

- examples/netmap_compat: gives a poll()-ish “fake” file
desc

> Cannot poll for > 0 or infinite (-1) timeout. Cannot
add this to an fd_set that has other I/O descriptors

> Multiple applications cannot open netmap sockets
that listen on the same port e.g., cannot run two
instances of the following from netmap_compat:

# ./build/bridge -c 0xfO -n 4 - -1 O
## See next slide for details

> Multiple threads in an app can't create netmap fd's
on the same port (netmap_regif() fails)
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!arriers to running multiple copies of
netmap compat:

* Hugepage allocation will fail: get hum_hugepages()
hogs up all available free pages.
> set num_pages at run time using gab.

* Each instance of the example tries to lock
/var/run/.rte_config

> reset default_config dir in
eal runtime config path() at run time using gdb.

« Second instance of netmap_compat/bridge then
makes the first instance SEGV.
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