User Perspectives On Trying To Use DPDK
For Accelerating Networking In
End-System Applications

Sowmini Varadhan (sowmini.varadhan@oracle.com)

ORACLE

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 1

.Agenda

Brief description of the types of networking paradigms
typically encountered in database/cluster applications

Some experiments in trying to use DPDK in these
paradigms.

Latency measurements, software-engineering
considerations

Conclusions from these experiments

ORACLE

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 2

.Typical Oracle/DB Problem Space

 Primarily request/response Transactions

- Multithreaded applications, each application typically
handling multiple descriptors.

* Networking: typically datagram sockets, using BSD
socket based APls

> UDP sockets, or,
> RDS (Reliable Datagram Service) sockets

ORACLE

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 3

. DB Application Network/Socket Mode

- RDS: Reliable Datagram Service

 Application payload is encapsulated in an RDS
header and handed off to some transport that
guarantees reliable, ordered delivery

» Transport can be InfiniBand (bypasses TCP/IP stack),
or TCP/IP/Ethernet.

- UDP based model is similar, but application has to do
extra work to ensure reliable/ordered delivery.

ORACLE

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 4

. Can We Use DPDK To Accelerate This?

- Some services are CPU bound, latency sensitive

- DPDK allows us to read packets directly from the
driver (like IB) and we already have some infra to take
care of guaranteed/ordered delivery, so evaluate
iffhow much latency reduction we can get from DPDK

> |f necessary, we can use our own custom ULP
encapsulation over L4.

ORACLE

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 5

. Using DPDK and KNI?

- DPDK inserts user-space PMDs, so all frames from
that NIC are diverted to uspace

- We only want a subset of flows, we dont want to
implement every IETF/IEEE protocol in our
experiment, so try to use KNI

- Register a receive side callback with the user-space
poll-mode driver to filter out “interesting” flows.
> |Interesting flows will be processed by DB software

> Rest (NFS, SMTP, IP fragments, Routing protocol
packets...) is sent to Linux stack via KNI's “vEthX".

ORACLE

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 6

Observations about this approach

* |t slows down linux TCP/IP stack
> How much penalty to the TCP/IP stack?

 Instrument three different types of RTT and compare
the numbers:

> Direct path to DPDK (igb_uio < PMD <« kni_rx_cb)
> DPDK < FIFO/shmem « linux application
> PF_PACKET « linux application
+ Experiment details: 64 byte sized packet with custom
ethertype (i.e., flow selection by ethertype).

Application on the SUT just reflects packet back by
swapping dmac, smac.

ORACLE

Sowmini Varadhan, Oracle Mainline Linux Kernel Group

7

. Avoiding the penalty for the Linux stack

- Latency estimates:
> Direct path to DPDK- approx (90 us)
> DPDK — FIFO/shmem — linux app (2000 ps)
> PF_PACKET — linux application (150-200 ps)

* High penalty for apps using the linux stack, e.g., NFS,
mail, ssh etc!

- Common practice: traffic bifurcation using SR-I0OV
> http://rhelblog.redhat.com/2015/10/02/
> https://blog.cloudflare.com/kernel-bypass/

ORACLE

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 8

http://rhelblog.redhat.com/2015/10/02/
https://blog.cloudflare.com/kernel-bypass/

. SR-IOV based traffic bifurcation

* Create a VF for the PCle bus

« Use ethtool to set up a traffic filter to pull out
“Interesting” packets on the VF

- DPDK PMD drivers work with the VF, no penalty for
linux stack

* Non-trivial routing, forwarding, ARP, egress
adjacencies still needs special config -

DPDK Socket

T
Linux
1

NIC
ORACLE

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 9

. Additional Drawbacks..

» Dealing with IP fragmentation/re-assembly:

> Even if we define the flow by the L4 4-tuple, we
have to deal with IP fragments

> This is slow path, we can let the native kernel stack
implementation sort this out for us, but..

> Application can now get packets either via DPDK
path, or from native kernel stack
* In general, the application is reading from muiltiple /O
descriptors

> Network packets from the wire,
> Disk 1/0..

 This is typically done using a select/poll/epoll loop.

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 10

Classic Server Side Paradigm:

while (1) {

select (nfds, fd set, ..):;

/* fd _set may have a mix of TCP, UDP, RDS
* sockets. After select (), multiple fd's
* in the set may be ready
*/
1f (incoming client connection request)

accept () and add new socket to fd set
else { /* incoming data */

Read request;

Send response;

)

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 1

. Mapping this to DPDK?

- Recommendation was to try to use Rx Interrupt
Mechanism: have and wait on a thread per fd,thread
will be woken up when packets arrive.

» Major application rewrite needed to adapt to this?

- DPDK library would be placing constraints on the
application's threading model

> Signal delivery issues for single-threaded
applications.

- examples/netmap_compat: gives a poll()-ish “fake” file
desc with several critical restrictions.

> Perf comparisons of netmap _compat vs native
netmap ongoing.

ORACLE

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 12

CPU utilization in busy-poll mode

» DPDK kni example run (uses syntax supplied with
DPDK package)

kni -c 0xfO -n 4 — -P -p 0x1 —config “(0, 4, 5)”

- See DPDK documentation for details of what each arg
In this iIncantation means..

* The effect of this set of arguments is that the poll-
mode driver will use CPU 4 for Rx, CPU 5 for Tx.

> CPUs 4 and 5 will be reported 0% idle on mpstat,
even when there is no traffic flowing.

» 100% polling has problems: CPU power limits, PCI
bus overhead

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 13

Conclusions

- DPDK may be ideal for *hot-potato” forwarding use-
cases like ovs, where there are external protocols to
set up the forwarding/switching rules, and DPDK is
only used to accelerate the core forwarding engine.

» For End-System use-cases,
> APls matter. Ease of programmability is important.

> Need to find an efficient way to co-exist with the

existing kernel stack as the fallback for
“uninteresting” (to the application) flows and network

protocols.
> Control plane considerations: Observability,

Configuration

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 14

Backup Slides

ORACLE

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 15

Other user pleasers

- Existing “ethtool” application does not give visibility
into offloads, detailed driver state..

- Better examples showing how to use h/w offload
features

ORACLE

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 16

References

13

» "DPDK Performance : How not to just do a demo with
DPDK” from Netdev 0.1

> http://www.slideshare.net/shemminger/dpdk-
performance

ORACLE

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 17

. Managing file descriptors with DPDK

- examples/netmap_compat: gives a poll()-ish “fake” file
desc

> Cannot poll for > 0 or infinite (-1) timeout. Cannot
add this to an fd_set that has other I/O descriptors

> Multiple applications cannot open netmap sockets
that listen on the same port e.g., cannot run two
instances of the following from netmap_compat:

./build/bridge -c 0xfO -n 4 - -1 O
See next slide for details

> Multiple threads in an app can't create netmap fd's
on the same port (netmap_regif() fails)

ORACLE

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 18

!arriers to running multiple copies of
netmap compat:

* Hugepage allocation will fail: get hum_hugepages()
hogs up all available free pages.
> set num_pages at run time using gab.

* Each instance of the example tries to lock
/var/run/.rte_config

> reset default_config dir in
eal runtime config path() at run time using gdb.

« Second instance of netmap_compat/bridge then
makes the first instance SEGV.

ORACLE

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

