
Sowmini Varadhan, Oracle Mainline Linux Kernel Group 1

User Perspectives On Trying To Use DPDK

For Accelerating Networking In

End-System Applications

Sowmini Varadhan (sowmini.varadhan@oracle.com)

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 2

Agenda

• Brief description of the types of networking paradigms
typically encountered in database/cluster applications

• Some experiments in trying to use DPDK in these
paradigms.

• Latency measurements, software-engineering
considerations

• Conclusions from these experiments

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 3

Typical Oracle/DB Problem Space

• Primarily request/response Transactions

• Multithreaded applications, each application typically
handling multiple descriptors.

• Networking: typically datagram sockets, using BSD
socket based APIs
> UDP sockets, or,
> RDS (Reliable Datagram Service) sockets

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 4

DB Application Network/Socket Mode

• RDS: Reliable Datagram Service

• Application payload is encapsulated in an RDS
header and handed off to some transport that
guarantees reliable, ordered delivery

• Transport can be InfiniBand (bypasses TCP/IP stack),
or TCP/IP/Ethernet.

• UDP based model is similar, but application has to do
extra work to ensure reliable/ordered delivery.

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 5

Can We Use DPDK To Accelerate This?

• Some services are CPU bound, latency sensitive

• DPDK allows us to read packets directly from the
driver (like IB) and we already have some infra to take
care of guaranteed/ordered delivery, so evaluate
if/how much latency reduction we can get from DPDK
> If necessary, we can use our own custom ULP

encapsulation over L4.

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 6

Using DPDK and KNI?
• DPDK inserts user-space PMDs, so all frames from

that NIC are diverted to uspace

• We only want a subset of flows, we dont want to
implement every IETF/IEEE protocol in our
experiment, so try to use KNI

• Register a receive side callback with the user-space
poll-mode driver to filter out “interesting” flows.
> Interesting flows will be processed by DB software
> Rest (NFS, SMTP, IP fragments, Routing protocol

packets...) is sent to Linux stack via KNI's “vEthX”.

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 7

Observations about this approach
• It slows down linux TCP/IP stack

> How much penalty to the TCP/IP stack?

• Instrument three different types of RTT and compare
the numbers:
> Direct path to DPDK (igb_uio ↔ PMD ↔ kni_rx_cb)
> DPDK ↔ FIFO/shmem ↔ linux application
> PF_PACKET ↔ linux application

• Experiment details: 64 byte sized packet with custom
ethertype (i.e., flow selection by ethertype).
Application on the SUT just reflects packet back by
swapping dmac, smac.

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 8

Avoiding the penalty for the Linux stack
• Latency estimates:

> Direct path to DPDK- approx (90 μs)
> DPDK → FIFO/shmem → linux app (2000 μs)
> PF_PACKET → linux application (150-200 μs)

• High penalty for apps using the linux stack, e.g., NFS,
mail, ssh etc!

• Common practice: traffic bifurcation using SR-IOV
> http://rhelblog.redhat.com/2015/10/02/
> https://blog.cloudflare.com/kernel-bypass/

http://rhelblog.redhat.com/2015/10/02/
https://blog.cloudflare.com/kernel-bypass/

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 9

SR-IOV based traffic bifurcation
• Create a VF for the PCIe bus
• Use ethtool to set up a traffic filter to pull out

“interesting” packets on the VF
• DPDK PMD drivers work with the VF, no penalty for

linux stack
• Non-trivial routing, forwarding, ARP, egress

adjacencies still needs special config

NIC

Linux

SocketDPDK

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 10

Additional Drawbacks..
• Dealing with IP fragmentation/re-assembly:

> Even if we define the flow by the L4 4-tuple, we
have to deal with IP fragments

> This is slow path, we can let the native kernel stack
implementation sort this out for us, but..

> Application can now get packets either via DPDK
path, or from native kernel stack

• In general, the application is reading from multiple I/O
descriptors
> Network packets from the wire,
> Disk I/O..

• This is typically done using a select/poll/epoll loop.

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 11

Classic Server Side Paradigm:
while (1) {

select(nfds, fd_set, ..);
 /* fd_set may have a mix of TCP, UDP, RDS

 * sockets. After select(), multiple fd's
 * in the set may be ready
 */

 ifif (incoming client connection request)
 accept() and add new socket to fd_set

 else { /* incoming data */
 Read request;
 Send response;

 }
 }

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 12

Mapping this to DPDK?

• Recommendation was to try to use Rx Interrupt
Mechanism: have and wait on a thread per fd,thread
will be woken up when packets arrive.

• Major application rewrite needed to adapt to this?

• DPDK library would be placing constraints on the
application's threading model
> Signal delivery issues for single-threaded

applications.

• examples/netmap_compat: gives a poll()-ish “fake” file
desc with several critical restrictions.
> Perf comparisons of netmap_compat vs native

netmap ongoing.

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 13

CPU utilization in busy-poll mode
• DPDK kni example run (uses syntax supplied with

DPDK package)

kni -c 0xf0 -n 4 – -P -p 0x1 –config “(0, 4, 5)”

• See DPDK documentation for details of what each arg
in this incantation means..

• The effect of this set of arguments is that the poll-
mode driver will use CPU 4 for Rx, CPU 5 for Tx.
> CPUs 4 and 5 will be reported 0% idle on mpstat,

even when there is no traffic flowing.

• 100% polling has problems: CPU power limits, PCI
bus overhead

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 14

Conclusions
• DPDK may be ideal for “hot-potato” forwarding use-

cases like ovs, where there are external protocols to
set up the forwarding/switching rules, and DPDK is
only used to accelerate the core forwarding engine.

• For End-System use-cases,
> APIs matter. Ease of programmability is important.
> Need to find an efficient way to co-exist with the

existing kernel stack as the fallback for
“uninteresting” (to the application) flows and network
protocols.

> Control plane considerations: Observability,
Configuration

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 15

Backup Slides

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 16

Other user pleasers
• Existing “ethtool” application does not give visibility

into offloads, detailed driver state..

• Better examples showing how to use h/w offload
features

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 17

References

• “DPDK Performance : How not to just do a demo with
DPDK” from Netdev 0.1
> http://www.slideshare.net/shemminger/dpdk-

performance

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 18

Managing file descriptors with DPDK

• examples/netmap_compat: gives a poll()-ish “fake” file
desc
> Cannot poll for > 0 or infinite (-1) timeout. Cannot

add this to an fd_set that has other I/O descriptors
> Multiple applications cannot open netmap sockets

that listen on the same port e.g., cannot run two
instances of the following from netmap_compat:

./build/bridge -c 0xf0 -n 4 – -i 0
See next slide for details

> Multiple threads in an app can't create netmap fd's
on the same port (netmap_regif() fails)

Sowmini Varadhan, Oracle Mainline Linux Kernel Group 19

Barriers to running multiple copies of
netmap_compat:
• Hugepage allocation will fail: get_num_hugepages()

hogs up all available free_pages.
> set num_pages at run time using gdb.

• Each instance of the example tries to lock
/var/run/.rte_config
> reset default_config_dir in

eal_runtime_config_path() at run time using gdb.

• Second instance of netmap_compat/bridge then
makes the first instance SEGV.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

