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Event driven programming model - Concepts
● Event is an asynchronous notification from HW/SW to CPU core
● Typical examples of events in dataplane are

○ Packets from ethernet device
○ Crypto work completion notification from Crypto HW
○ Timer expiry notification from Timer HW
○ CPU generates an event to notify another CPU(used in pipeline mode) 

● Event driven programming is a programming paradigm in which flow of 
the program is determined by events
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Characteristics of HW based event device
● Millions of flow queues
● Events associated with a single flow queue can be scheduled on multiple 

CPUs for concurrent processing while maintaining the original event order
● Provides synchronization of the events without SW lock schemes
● Priority based scheduling to enable the QoS
● Event device may have 1 to N schedule groups
● Each core can be a member of any subset of schedule groups

○ Each core decides which schedule group(s) it accepts the events from 
○ Schedule groups provide a means to execute different functions on different cores

● Flow queues grouped into schedule groups
● Core to schedule group membership can be changed at runtime to 

support scaling and reduce the latency of critical work by assigning more 
cores at runtime  

● Event scheduler is implemented in HW to the save CPU cycles 



libeventdev components
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libeventdev - flow
● Event driver registers with libeventdev subsystem and subsystem provide a unique device id
● Application get the device capabilities with rte_eventdev_info_get(dev_id), like

○ The number of schedule groups
○ The number of flow queues in a schedule group

● Application configures the event device and each schedule groups in the event device, like
○ The number of schedule groups and the flow queues are required
○ Priority of each schedule group and list of l-cores associated with it
○ Connect schedule groups with other HW event producers in the system like ethdev and crypto etc

● In fastpath,
○ HW/SW enqueues the events to flow queues associated with schedule groups
○ Core gets the event through scheduler by invoking rte_event_scheduler() from lcore
○ Core process the event and enqueue to another downstream queue for further processing or send the 

event/packet to wire if it is the last stage of the processing
○ rte_event_scheduler() schedules the event based on 

■ selection of the schedule group 
● The caller l-core membership in the schedule group
●  Schedule group priority relative to other schedule groups.

■ selection of the flow queue and the event inside the  schedule group
● Scheduler sync method associated with the flow queue(ATOMIC vs ORDERED/PARALLEL) 



Schedule sync methods (How events are Synchronized)
● PARALLEL

○ Events from a parallel flow queue can be scheduled to multiple cores for concurrent 
processing

○ Ingress order is not maintained
● ATOMIC

○ Events from an atomic flow queue can schedule only to a single core at a time
○ Enable critical section in packet processing like sequence number update etc
○ Ingress order is maintained as outstanding is always one at a time

● ORDERED
○ Events from the ordered flow queue can be scheduled to multiple cores for concurrent 

processing
○ Ingress order is maintained
○ Enable high single flow throughput



ORDERED flow queue for ingress ordering
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Use case (Simple IPSec Outbound processing) 
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Simple IPSec Outbound processing - Cores View
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Fast path APIs - Simple IPSec outbound example
#define APP_STATE_SEQ_UPDATE 0                                             
on each lcore                                                                  
{                                                                               
        struct rte_event ev;                                                    
        uint32_t flow_queue_id_mask = rte_eventdev_flow_queue_id_mask(eventdev);         
                                                                                
        while (1) {                                                             
                ret = rte_event_schedule(eventdev, &ev, true);

If (!ret)
       continue;
              

                /* packets from HW rx ports proceed parallely per flow(ORDERED)*/   
                if (ev.event_type == RTE_EVENT_TYPE_ETHDEV) {                   
                        sa = outbound_sa_lookup(ev.mbuf);

        modify the packet per SA attributes 
        find the tx port and tx queue from routing table

                                                                                
                        /* move to next phase (atomic seq number update per sa) */
                        ev.flow_queue_id = sa & flow_queue_id_mask;             
                        ev.sched_sync = RTE_SCHED_SYNC_ATOMIC;                  
                        ev.sub_event_id = APP_STATE_SEQ_UPDATE;                 
                        rte_event_enqueue(evendev, ev);                         
                } else if (ev.event_type == RTE_EVENT_TYPE_LCORE && ev.sub_event_id == APP_STATE_SEQ_UPDATE) {
                        sa = ev.flow_queue_id;                                  
                        /* do critical section work per sa */               
                        do_critical_section_work(sa);                       
                                                                                
                        /* Issue the crypto request and generate the following on crypto work completion */
                        ev.flow_queue_id = tx_port;                                  
                        ev.sub_event_id = tx_queue_id;            
                        ev.sched_sync = RTE_SCHED_SYNC_ATOMIC;                 
                        rte_cryptodev_event_enqueue(cryptodev, ev.mbuf, eventdev, ev);                
                } 

                } else if((ev.event_type == RTE_EVENT_TYPE_CRYPTODEV)
        tx_port = ev.flow_queue_id;
        tx_queue_id = ev.sub_evend_id;

                        send the packet to tx port/queue                              
                }                                                               
        }                                                                       
} 



Benefits of event driven programming model
● Enable high single flow throughput with ORDERED schedule sync method
● The processing stages are not bound to specific cores. It provides better 

load-balancing and scaling capabilities than traditional pipelining.
● Prioritize: Guarantee lcores work on the highest priority event available
● Support asynchronous operations which allow the cores to stay busy while 

hardware manages requests.
● Remove the static mappings between core to port/rx queue
● Scaling from 1 to N flows are easy as its not bound to specific cores
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API Requirements
● APIs similar to existing ethernet and crypto API framework for

○ Device creation, device Identification and device configuration
● Enumerate libeventdev resources as numbers(0..N)  to

○ Avoid ABI issues with handles

○ event device may have million flow queues so it's not practical to have handles for each 
flow queue and its associated name based lookup in multiprocess case

● Avoid struct mbuf changes
● APIs to

○ Enumerate eventdev driver capabilities and resources
○ Enqueue events from l-core
○ Schedule events
○ Synchronize events
○ Maintain ingress order of the events



API - Slow path
● APIs similar to existing ethernet and crypto API framework for

○ Device creation - Physical event devices are discovered during the PCI probe/enumeration of the EAL function 
which is executed at DPDK initialization, based on their PCI device identifier, each unique PCI BDF (bus/bridge, 
device, function)

○ Device Identification - A unique device index used to designate the event device in all functions exported by 
the eventdev API.

○ Device Capability discovery 
■ rte_eventdev_info_get() - To get the global resources like number of schedule groups and number of flow 

queues per schedule group etc of the event device
○ Device configuration

■ rte_eventdev_configure() - configures the number of schedule groups and the number of flow queues on 
the schedule groups

■ rte_eventdev_sched_group_setup() - configures schedule group specific configuration like priority and the 
list of l-core has membership in the schedule group

○ Device state change - rte_eventdev_start()/stop()/close() like ethdev device



API - Fast path
● bool rte_event_schedule(uint8_t dev_id, struct rte_event *ev, bool wait);

○ Schedule an event to the caller l-core from a specific schedule group of event device 
designated by its dev_id

● bool rte_event_schedule_from_group(uint8_t dev_id, uint8_t group_id,struct rte_event *ev, wait)                                           
○ Like rte_event_schedule(), but schedule group provided as argument 

● void rte_event_schedule_release(uint8_t dev_id);
○ Release the current scheduler synchronization context associated with the scheduler 

dispatched event
● int rte_event_schedule_group_[join/leave](uint8_t dev_id, uint8_t group_id);

○ Leave/Joins the caller l-core from/to a schedule group
● bool rte_event_schedule_ctxt_update(uint8_t dev_id, uint32_t flow_queue_id, uint8_t  

sched_sync, uint8_t sub_event_type, bool wait);
○ rte_event_schedule_ctxt_update() can be used to support run-to-completion model where the 

application requires the current *event* to stay on the same  l-core as it moves through the 
series of processing stages, provided the event type is RTE_EVENT_TYPE_LCORE



● rte_event_schedule_ctxt_update() can be used to support run-to-completion model 
where the application requires the current event to stay on same l-core as it moves 
through the series of processing stages, provided the event type is 
RTE_EVENT_TYPE_LCORE(l-core to l-core communication)

● For example in the previous use case, the ATOMIC  sequence number update per 
SA can be achieved like below

● Scheduler context update is costly operation, by spliting it as two 
functions(rte_event_schedule_ctxt_update() and rte_event_schedule_ctxt_wait()) allows 
application to overlap the context switch latency with other profitable work

Run-to-completion model support

                        /* move to next phase (atomic seq number update per sa) */
                        ev.flow_queue_id = sa & flow_queue_id_mask;             
                        ev.sched_sync = RTE_SCHED_SYNC_ATOMIC;                  
                        ev.sub_event_id = APP_STATE_SEQ_UPDATE;                 
                        rte_event_enqueue(evendev, ev);                         
                } else if (ev.event_type == RTE_EVENT_TYPE_LCORE && ev.sub_event_id == 
APP_STATE_SEQ_UPDATE) {
                        sa = ev.flow_queue_id;                                  
                        /* do critical section work per sa */               
                        do_critical_section_work(sa);    

          /* move to next phase (atomic seq number update per sa) */
    
                    rte_event_schedule_ctxt_update(eventdev,
sa & flow_queue_id_mask, RTE_SCHED_SYNC_ATOMIC, 
APP_STATE_SEQ_UPDATE, true);           

                        /* do critical section work per sa */               
                        do_critical_section_work(sa);    



Future work
● Integrate the event device with ethernet, crypto and timer subsystems in 

DPDK
○ Ethdev/event device integration is possible by extending new 6WIND’s 

ingress classification specification where a new action type can 
establish ethdev’s port to eventdev’s schedule group connection

○ Cryptodev needs some change at configuration stage to set crypto 
work complete event delivery mechanism 

○ Spec out timerdev for PCI based timer event devices(timer event 
devices generates timer expiry event vs callback in the existing SW 
based timer scheme)

○ Event driven model operates on a single event at a time. Need to 
create a helper  API to make it burst in nature for the final enqueues to 
different HW block like ethdev tx-queue


