
libeventdev:
Event driven programming model

 framework for DPDK
Jerin Jacob
jerin.jacob@cavium.com

Agenda
● Event driven programming model concepts from data plane

perspective
● Characteristics of HW based event manager devices
● libeventdev
● Example use case - Simple IPSec outbound processing
● Benefits of event driven programming model

Event driven programming model - Concepts
● Event is an asynchronous notification from HW/SW to CPU core
● Typical examples of events in dataplane are

○ Packets from ethernet device
○ Crypto work completion notification from Crypto HW
○ Timer expiry notification from Timer HW
○ CPU generates an event to notify another CPU(used in pipeline mode)

● Event driven programming is a programming paradigm in which flow of
the program is determined by events

Core 0

queue0

Core 1 Core nScheduler

queue N

queue3

queue2

queue1
packet
event

Timer
expiry ev

Crypto
done ev

SW
event

Packet event, Timer
expiry event and
crypto work complete
event are the typical
HW generated events

Core can also produce the SW
event to notify another core for
work completion

Queue 0..N stores the events

Scheduler schedules an event to core

Core process the event and
enqueue to another downstream
queue for further processing or
send the event/packet to wire

Event driven programming model - Concepts

Characteristics of HW based event device
● Millions of flow queues
● Events associated with a single flow queue can be scheduled on multiple

CPUs for concurrent processing while maintaining the original event order
● Provides synchronization of the events without SW lock schemes
● Priority based scheduling to enable the QoS
● Event device may have 1 to N schedule groups
● Each core can be a member of any subset of schedule groups

○ Each core decides which schedule group(s) it accepts the events from
○ Schedule groups provide a means to execute different functions on different cores

● Flow queues grouped into schedule groups
● Core to schedule group membership can be changed at runtime to

support scaling and reduce the latency of critical work by assigning more
cores at runtime

● Event scheduler is implemented in HW to the save CPU cycles

libeventdev components

Core 0 Core 1 Core nScheduler

packet
event
Timer
expiry

ev
Crypto

done ev

SW
event

flowqueue n

flowqueue2
flowqueue1
flowqueue0

flowqueue n

flowqueue2
flowqueue1
flowqueue0

flowqueue n

flowqueue2
flowqueue1
flowqueue0

Sched
group0

Sched
group1

Sched
group n

enqueue(grp_id,
flow_queue_id,
schedule_sync.
event_type,
event)

{grp,flow_queueid,schedule_sync, event_type, event}= schedule()

priority x

priority y

priority z

Core 0's
Sched
Group
bitmask:
100011
Group 0
Group 1
Group n

Core 1's
Sched
group
bitmask:
000001
Group 0

Each core has group-mask to capture, the list of schedule groups participate in schedule()

API Interface

Southbound eventdev driver interface

libeventdev - flow
● Event driver registers with libeventdev subsystem and subsystem provide a unique device id
● Application get the device capabilities with rte_eventdev_info_get(dev_id), like

○ The number of schedule groups
○ The number of flow queues in a schedule group

● Application configures the event device and each schedule groups in the event device, like
○ The number of schedule groups and the flow queues are required
○ Priority of each schedule group and list of l-cores associated with it
○ Connect schedule groups with other HW event producers in the system like ethdev and crypto etc

● In fastpath,
○ HW/SW enqueues the events to flow queues associated with schedule groups
○ Core gets the event through scheduler by invoking rte_event_scheduler() from lcore
○ Core process the event and enqueue to another downstream queue for further processing or send the

event/packet to wire if it is the last stage of the processing
○ rte_event_scheduler() schedules the event based on

■ selection of the schedule group
● The caller l-core membership in the schedule group
● Schedule group priority relative to other schedule groups.

■ selection of the flow queue and the event inside the schedule group
● Scheduler sync method associated with the flow queue(ATOMIC vs ORDERED/PARALLEL)

Schedule sync methods (How events are Synchronized)
● PARALLEL

○ Events from a parallel flow queue can be scheduled to multiple cores for concurrent
processing

○ Ingress order is not maintained
● ATOMIC

○ Events from an atomic flow queue can schedule only to a single core at a time
○ Enable critical section in packet processing like sequence number update etc
○ Ingress order is maintained as outstanding is always one at a time

● ORDERED
○ Events from the ordered flow queue can be scheduled to multiple cores for concurrent

processing
○ Ingress order is maintained
○ Enable high single flow throughput

ORDERED flow queue for ingress ordering

6 5 4 3 2 1

ORDERED flow queue
Sche
duler

Cores processing ordered events in parallel

4

6

3

1

2

5

6 5 4 3 2 1

Any downstream flow queue

rte_event_schedule()
rte_event_queue_enqueue()

The source ORDERED flow queue’s
ingress order shall be maintained
when events are enqueued to any
downstream flow queue

Use case (Simple IPSec Outbound processing)

PHASE1:
POLICY/SA,

ROUTE
Lookup

 In parallel
(ORDERED)

 Port 0
 RX

 Port 1
 RX

 Port 2
 RX

 Port 3
 RX

 Port 4
 RX

 Port 6
 RX

 Port 0
 TX

 Port 1
 TX

 Port 2
 TX

 Port 3
 TX

 Port 4
 TX

 Port 6
 TX

PHASE2:
SEQ

Number
update per

SA
(ATOMIC)

PHASE3:
HW assisted
IPSec crypto

PHASE4:
Core sends
encrypted
pks to Tx

port queues
(ATOMIC)

Packets enqueued into one
of up to 1M flow queues
based on a classification
criterion(e.g 5 tuple hash)

PHASE1 generates a unique SA based on
input packet and SA tables.
Each SA flow will be processed in parallel.
Core enqueues on ATOMIC flow queue for
critical section processing per SA

Crypto HW sends the
crypto work completion
event to notify the core.

Crypto HW processes the
crypto operations in
background

Core issues IPSec crypto
request to HW

Simple IPSec Outbound processing - Cores View

Core n

Core 1

Core 0

while(1) {
 event = rte_event_schedule();
 process the specific phase
 call different enqueue() to send to
 - atomic flow queue
 - crypto HW engine queue
 - TX port queue
}

Scheduler

N

HW
crypto
assist

Tx port queue

Tx port queue

Tx port queue

Per SA, Core enqueues on
ATOMIC flow queue for
critical section phase of the
flow

On completion of crypto work, HW
generates the crypto work completion
notification

RX pkt HW enqueues one of
millions flow to ORDERED flow
queues

Flow queues

SA

Flow queues

Flow queues

SA

Core enqueues the crypto
work

Fast path APIs - Simple IPSec outbound example
#define APP_STATE_SEQ_UPDATE 0
on each lcore
{
 struct rte_event ev;
 uint32_t flow_queue_id_mask = rte_eventdev_flow_queue_id_mask(eventdev);

 while (1) {
 ret = rte_event_schedule(eventdev, &ev, true);

If (!ret)
 continue;

 /* packets from HW rx ports proceed parallely per flow(ORDERED)*/
 if (ev.event_type == RTE_EVENT_TYPE_ETHDEV) {
 sa = outbound_sa_lookup(ev.mbuf);

 modify the packet per SA attributes
 find the tx port and tx queue from routing table

 /* move to next phase (atomic seq number update per sa) */
 ev.flow_queue_id = sa & flow_queue_id_mask;
 ev.sched_sync = RTE_SCHED_SYNC_ATOMIC;
 ev.sub_event_id = APP_STATE_SEQ_UPDATE;
 rte_event_enqueue(evendev, ev);
 } else if (ev.event_type == RTE_EVENT_TYPE_LCORE && ev.sub_event_id == APP_STATE_SEQ_UPDATE) {
 sa = ev.flow_queue_id;
 /* do critical section work per sa */
 do_critical_section_work(sa);

 /* Issue the crypto request and generate the following on crypto work completion */
 ev.flow_queue_id = tx_port;
 ev.sub_event_id = tx_queue_id;
 ev.sched_sync = RTE_SCHED_SYNC_ATOMIC;
 rte_cryptodev_event_enqueue(cryptodev, ev.mbuf, eventdev, ev);
 }

 } else if((ev.event_type == RTE_EVENT_TYPE_CRYPTODEV)
 tx_port = ev.flow_queue_id;
 tx_queue_id = ev.sub_evend_id;

 send the packet to tx port/queue
 }
 }
}

Benefits of event driven programming model
● Enable high single flow throughput with ORDERED schedule sync method
● The processing stages are not bound to specific cores. It provides better

load-balancing and scaling capabilities than traditional pipelining.
● Prioritize: Guarantee lcores work on the highest priority event available
● Support asynchronous operations which allow the cores to stay busy while

hardware manages requests.
● Remove the static mappings between core to port/rx queue
● Scaling from 1 to N flows are easy as its not bound to specific cores

Backup slides

API Requirements
● APIs similar to existing ethernet and crypto API framework for

○ Device creation, device Identification and device configuration
● Enumerate libeventdev resources as numbers(0..N) to

○ Avoid ABI issues with handles

○ event device may have million flow queues so it's not practical to have handles for each
flow queue and its associated name based lookup in multiprocess case

● Avoid struct mbuf changes
● APIs to

○ Enumerate eventdev driver capabilities and resources
○ Enqueue events from l-core
○ Schedule events
○ Synchronize events
○ Maintain ingress order of the events

API - Slow path
● APIs similar to existing ethernet and crypto API framework for

○ Device creation - Physical event devices are discovered during the PCI probe/enumeration of the EAL function
which is executed at DPDK initialization, based on their PCI device identifier, each unique PCI BDF (bus/bridge,
device, function)

○ Device Identification - A unique device index used to designate the event device in all functions exported by
the eventdev API.

○ Device Capability discovery
■ rte_eventdev_info_get() - To get the global resources like number of schedule groups and number of flow

queues per schedule group etc of the event device
○ Device configuration

■ rte_eventdev_configure() - configures the number of schedule groups and the number of flow queues on
the schedule groups

■ rte_eventdev_sched_group_setup() - configures schedule group specific configuration like priority and the
list of l-core has membership in the schedule group

○ Device state change - rte_eventdev_start()/stop()/close() like ethdev device

API - Fast path
● bool rte_event_schedule(uint8_t dev_id, struct rte_event *ev, bool wait);

○ Schedule an event to the caller l-core from a specific schedule group of event device
designated by its dev_id

● bool rte_event_schedule_from_group(uint8_t dev_id, uint8_t group_id,struct rte_event *ev, wait)
○ Like rte_event_schedule(), but schedule group provided as argument

● void rte_event_schedule_release(uint8_t dev_id);
○ Release the current scheduler synchronization context associated with the scheduler

dispatched event
● int rte_event_schedule_group_[join/leave](uint8_t dev_id, uint8_t group_id);

○ Leave/Joins the caller l-core from/to a schedule group
● bool rte_event_schedule_ctxt_update(uint8_t dev_id, uint32_t flow_queue_id, uint8_t

sched_sync, uint8_t sub_event_type, bool wait);
○ rte_event_schedule_ctxt_update() can be used to support run-to-completion model where the

application requires the current *event* to stay on the same l-core as it moves through the
series of processing stages, provided the event type is RTE_EVENT_TYPE_LCORE

● rte_event_schedule_ctxt_update() can be used to support run-to-completion model
where the application requires the current event to stay on same l-core as it moves
through the series of processing stages, provided the event type is
RTE_EVENT_TYPE_LCORE(l-core to l-core communication)

● For example in the previous use case, the ATOMIC sequence number update per
SA can be achieved like below

● Scheduler context update is costly operation, by spliting it as two
functions(rte_event_schedule_ctxt_update() and rte_event_schedule_ctxt_wait()) allows
application to overlap the context switch latency with other profitable work

Run-to-completion model support

 /* move to next phase (atomic seq number update per sa) */
 ev.flow_queue_id = sa & flow_queue_id_mask;
 ev.sched_sync = RTE_SCHED_SYNC_ATOMIC;
 ev.sub_event_id = APP_STATE_SEQ_UPDATE;
 rte_event_enqueue(evendev, ev);
 } else if (ev.event_type == RTE_EVENT_TYPE_LCORE && ev.sub_event_id ==
APP_STATE_SEQ_UPDATE) {
 sa = ev.flow_queue_id;
 /* do critical section work per sa */
 do_critical_section_work(sa);

 /* move to next phase (atomic seq number update per sa) */

 rte_event_schedule_ctxt_update(eventdev,
sa & flow_queue_id_mask, RTE_SCHED_SYNC_ATOMIC,
APP_STATE_SEQ_UPDATE, true);

 /* do critical section work per sa */
 do_critical_section_work(sa);

Future work
● Integrate the event device with ethernet, crypto and timer subsystems in

DPDK
○ Ethdev/event device integration is possible by extending new 6WIND’s

ingress classification specification where a new action type can
establish ethdev’s port to eventdev’s schedule group connection

○ Cryptodev needs some change at configuration stage to set crypto
work complete event delivery mechanism

○ Spec out timerdev for PCI based timer event devices(timer event
devices generates timer expiry event vs callback in the existing SW
based timer scheme)

○ Event driven model operates on a single event at a time. Need to
create a helper API to make it burst in nature for the final enqueues to
different HW block like ethdev tx-queue

