DPDK ON EMBEDDED NETWORKING SOCS
- EXPERIENCE & NEEDS

HEMANT AGRAWAL & SHREYANSH JAIN

NXP
10™ AUGUST 2016

DPDK US Summit - San Jose - 2016

x SECURE CONNECTIONS
FOR A SMARTER WORLD

PUBLIC USE

©2016 NXP Semiconductors

AGENDA

- NXP’s experience on DPDK
- S0C support in DPDK
- Current Status

1 PUBLIC USE

h

P

NXP (formerly Freescale)

- NXP platform supports user space data path APIs

- NXP is founding member of Linaro LNG
- participate and contribute to ODP

- NXP supports DPDK,
- now participating and contributing to DPDK.

- DPDK can evolve to truly support multiple architectures and acceleration
technologies while still retaining the goal of portable software.

2 PUBLIC USE

h

P

Using DPDK on NXP SoCs

Main Goal is to add NXP platform support in DPDK.

- Compiling DPDK for NXP ARM device was easy

- DPDK 16.07 supports nxp platform configuration
= defconfig_arm64-dpaa2-linuxapp-gcc

- However, DPDK lacked support for in-built MACs and other data path accelerators.
- NXP SoCs have in-built MAC and they are non-PClI based.
- BMAN - Packet buffer to be allocated & managed by HW
- QMAN - Packet Queues mapped to hardware queues
- Ability to use HW based packet Ordering
- Offloaded Traffic Management

3 PUBLIC USE

h

P

What is stopping NXP to add it’s platform support in DPDK

- Inherently PCI inclined architecture

dev_driver_list

D D D
L [P L

pci_device_list

PMD rte_gaf_driver_register()

\ 4

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

* rte_eal_init() pci_driver_list

< rte_eal_init()
rte_driver N \
. rte_eal_dev_init() river->init() rte_eal_pci_scan()

rte_eth_driver_register()

r | ini
\4 9 \ te_eal_init() o

rte_eal _pci_register() rte_eal_pci_probe()

4 PUBLIC USE M

Extending DPDK for SoC support

SoC PMD: Poll Mode driver model for SoC devices

Provides a clean integration of SoC via a PMD in DPDK
+ Hardware abstraction in DPDK is at the PMD layer
oA - DPDK-API: A generic AP| extended to support SoCs

Do — DPDK provides a two layer device model to support many
devices at the same time/binary, which can include SoC
coftwar devices
L — Need to enhance DPDK with some SoC specific needs or
— Hardware features to support SoC hardware
manager « Non-PCI configuration

« External memory manager(s) (for hardware based memory)
» Event based programming model

SoC SDK Supports

other device « SoC-PMD: Poll Mode Driver model for SoC

types
I — Allows SoC SDK’s to remain private

« Supports ARM and MIPS DPDK ports to utilize these

L DPDK — Architecture) SoC desig ns

Source: DPDK SF Summit 2015: “Future Enhancements to DPDK

Framework” by Keith Wiles, Principal Engineer, Intel Corporation M
5 PUBLIC USE

SoC support- Status check

- Run time services for non-IA.
© Available for ARM, Power8 and other architecture
- Mempool offload framework — to use external or hardware memory managers
© Merged in 16.07
- Re-org of VFIO framework support- Allow Platform bus support
© Merged in 16.07
- HW Accelerator support
© Rte_cryptodev framework supports SEC HW
- non-PCle devices support
- Multiple discussions, patch-sets — slow progress.
- Event Driven Programming model
- Not yet. RFC APIs are now available.

6 PUBLIC USE

h

P

Re-factoring of device framework for SoC support

> Patch Set #1 - Generalizing the driver-device

relationship

- Prepare for rte_device / rte_driver <David M/Shreyansh>
removal of eth/crypto driver registration callbacks.
pdev -> PCI registration using helpers
rte_device=>pci/vdev device hierarchy
removal of PMD_PDEV type and PMD_VDEV
Start to support for hotplugging

- Originally proposed by David in Jan’16, now at version 7.

- 17 Patch series < http://dpdk.ora/ml/archives/dev/2016-
Auqust/044941.html>

» Patch Set #2 - rte_driver/device infrastructure

- rte _driver/device infrastructure <Jan Viktorin>

pmd_type is removed
introduced rte_vdev_driver inheriting rte_driver

7 PUBLIC USE

PMD_REGISTER_DRIVER is replaced by
RTE_EAL_VDRV_REGISTER(or, DRIVER_REGISTER_xxx)

rte_driver/device integrated into rte_pci_driver/device

all drivers and devices are in 2 lists - general and bus-specific

- 15 patch series <http://dpdk.org/ml/archives/dev/2016-
July/043645.html|>

> Patch Set #3 - Support non-PClI devices
- Support non-PC/ devices <Jan Viktorin>
- Introducing SoC driver support

- 28-15 patches
<http://www.dpdk.org/ml/archives/dev/2016-
May/038486.html>

h
P

http://dpdk.org/ml/archives/dev/2016-August/044941.html
http://dpdk.org/ml/archives/dev/2016-July/043645.html
http://dpdk.org/ml/archives/dev/2016-January/031390.html

Device/Driver Structure

EXxisting structure

PMD Drivers

rte driver

pci_device_list

eth driver
ll%m A

rte pci device

I

rte eth dev

dev_driver_list

EAL Initialization

pci_driver_list
X.}.]

rte pci driver

« Virtual devices are also represented by a
type of rte_driver (PMD_VDEV) and

treated as PCI devices

* No space for non-PCl/non-vdevices

Proposed changes In this structure

PMD Drivers driver_list

device_list

rte device

A

rte pci device rte pci driver
rte vdev device rte vdev driver
rte soc device ' rte soc driver
rte XXX device rte XXX driver
pci_device_list pci_driver_list
vdev_device_list vdev_driver_list
soc_device_list soc_driver_list

Device/Driver Structure
Existing structure

dev_driver_list
PMD Drivers

rte driver

EAL Initialization

pci_device_list pci_driver_list

: RS

rte pci driver

rte pci device

A S

S

T

rte eth dev

» Virtual devices are also represented by a
type of rte_driver (PMD_VDEV) and
treated as PCI devices

* No space for non-PCl/non-vdevices

9 PUBLIC USE

Proposed changes in this structure

PMD Drivers driver_list

device_list

rte device

AN\

rte pci device rte pci driver

rte vdev device rte vdev driver

1 rte soc_device | 1 rte soc driver

rte XXX device rte XXX driver

pci_driver_list

vdev_driver_list

soc_driver_list

pci_device_list

vdev_device_list

soc_device_list

REE.

h

P

Device/Driver Structure

- Simpler Device <~ Driver hierarchy
= rte_driver/rte_device represents a generic driver/device, equivalent to a Bus

= rte_pci_driver/rte_pci_device represent an instantiation of rte_driver/rte_device
- Same is case for vdev, SoC, XXX

- Hotplug support
= Devices attach and detach functions are responsibility of a ‘bus’ — rte_device/rte_driver
- Open Points:

-How to represent resources — BDF format is too PCI specific; Soc’s may have different
ways.

- Devargs to be restructured
= How should a device be identified (blacklist/whitelist)

h
P

10 PUBLIC USE

Enabling SoC Support

- Jan Viktorin has proposed series of patches [1] which:
= Generalization of sysfs parsing routines — majorly movement into EAL common area
« Introducing rte soc driver, rte soc device (and other internal structures)
- Itis parallel to rte_driver, eth_driver so need for generalization of device<->driver ABI/API.

= SoC registration and de-registration methods and their invocation from rte eal init ()

- Maintaining new linked-lists for SoC devices/drivers (soc_driver list, soc device list)

= Scanning for SoC specs using udev

- SoC devices are quite varied — a one-size-fits-all approach might not work.
- NXP devices are based on Platform driver and their initialization sequences are different
- Need for a generic series of init/deinit for devices which can be adapted for PCl/non-PCI devices seamlessly.

= Duplicating various PCI operations (attach/detach/devargs parsing) to suit SoC needs

[1] http://dpdk.org/ml/archives/dev/2016-May/038486.html

h

11 PUBLIC USE

P

VFIO Changes

- DPDK VFIO Mapping doesn’t support platform bus

- NXP’s DPAA is a Platform Bus design

- Resources are not directly discoverable and cannot be ‘scanned’
- Structures associated with devices need to be maintained across the life-time of PMD

- Current design is PCI dependent
- Assumes that devices are discoverable
- rte_eal_init()=>rte_eal_pci_probe()=>rte_eal _pci_probe_all/one_driver()=>rte_eal_pci_map_device()
- rte_eal_pci_map_device() finds the container, connects the group to it and performs DMA Mapping
= [n case of NXP DPAA:

- Once container<group are connected, devices within the group need to be scanned
- These devices are used for interfacing with the hardware by PMD for RX/TX

- Need to integrate Platform Bus with device probing

= When rte_eal SoC_probe*() is done, post container<>group mapping, callbacks for SoC device
mapping can be done

= These callbacks can be part of the rte_driver/rte_soc_driver structure

h

12 PUBLIC USE

P

What else can be improved:

- External Memory Pool support

= API sets which enable seamless usage without any confusion
- rte_pktmbuf _pool create can use an external mempool, but rte_ mempool create cannot
- rte_pktmbuf_pool_create cannot iterate over objects, but rte_ mempool_create can

- So, for external mempool support, application looses control:
- 1) Create New API or Modify rte_pktmbuf_pool_create(with..iterator..)

- 2) Make external pool support uniform. i.e. deprecate rte_mempool_create or augment it with mempool name.

- Crypto — generalizing the cryptodev framework to support different kind of hw
crypto interface

- Support for HW offload to Distributer/re-order, QoS and other libraries.

h

13 PUBLIC USE

P

14 PUBLIC USE

Questions ?

hemant.agrawal@nxp.com

h

P

SECURE CONNECTIONS
FOR A SMARTER WORLD

