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AGENDA

• NXP’s experience on DPDK

• SoC support in DPDK

• Current Status
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NXP (formerly Freescale)

• NXP platform supports user space data path APIs

• NXP is founding member of Linaro LNG 

− participate and contribute to ODP

• NXP supports DPDK, 

− now participating and contributing to DPDK.

• DPDK can evolve to truly support multiple architectures and acceleration 
technologies while still retaining the goal of portable software.
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Using DPDK on NXP SoCs

Main Goal is to add NXP platform support in DPDK.

• Compiling DPDK for NXP ARM device was easy

− DPDK 16.07 supports nxp platform configuration

 defconfig_arm64-dpaa2-linuxapp-gcc

• However, DPDK lacked support for in-built MACs and other data path accelerators.

− NXP SoCs have in-built MAC and they are non-PCI based.

− BMAN - Packet buffer to be allocated & managed by HW

− QMAN - Packet Queues mapped to hardware queues

− Ability to use HW based packet Ordering 

− Offloaded Traffic Management
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What is stopping NXP to add it’s platform support in DPDK

• Inherently PCI inclined architecture

PMD

rte_driver
rte_eal_dev_init()

rte_eth_driver_register()

dev_driver_list

rte_eal_pci_register()

driver->init()

pci_driver_listrte_eal_init()

rte_eal_pci_probe()

rte_eal_init()

pci_device_list

rte_eal_pci_scan()

rte_eal_driver_register()

rte_eal_init()
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Extending DPDK for SoC support

Source: DPDK SF Summit 2015:  “Future Enhancements to DPDK 

Framework” by Keith Wiles, Principal Engineer, Intel Corporation 
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SoC support- Status check

• Run time services for non-IA.

 Available for ARM, Power8 and other architecture

• Mempool offload framework – to use external or hardware memory managers

 Merged in 16.07

• Re-org of VFIO framework support- Allow Platform bus support

 Merged in 16.07

• HW Accelerator support

 Rte_cryptodev framework supports SEC HW

• non-PCIe devices support

- Multiple discussions, patch-sets – slow progress. 

• Event Driven Programming model

- Not yet. RFC APIs are now available.
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Re-factoring of device framework for SoC support

 Patch Set #1 - Generalizing the driver-device 

relationship

− Prepare for rte_device / rte_driver <David M/Shreyansh>

 removal of eth/crypto driver registration callbacks. 

 pdev -> PCI registration using helpers

 rte_device=>pci/vdev device hierarchy 

 removal of PMD_PDEV type and PMD_VDEV

 Start to support for hotplugging

− Originally proposed by David in Jan’16, now at version 7.

− 17 Patch series < http://dpdk.org/ml/archives/dev/2016-

August/044941.html>

 Patch Set #2 - rte_driver/device infrastructure

• rte_driver/device infrastructure <Jan Viktorin>

 pmd_type is removed 

 introduced rte_vdev_driver inheriting rte_driver

 PMD_REGISTER_DRIVER is replaced by 

RTE_EAL_VDRV_REGISTER( or, DRIVER_REGISTER_xxx)

 rte_driver/device integrated into rte_pci_driver/device

 all drivers and devices are in 2 lists - general and bus-specific

− 15 patch series <http://dpdk.org/ml/archives/dev/2016-

July/043645.html>

Patch Set #3 - Support non-PCI devices

• Support non-PCI devices <Jan Viktorin>

• Introducing SoC driver support

• 28-15 patches 

<http://www.dpdk.org/ml/archives/dev/2016-

May/038486.html>

http://dpdk.org/ml/archives/dev/2016-August/044941.html
http://dpdk.org/ml/archives/dev/2016-July/043645.html
http://dpdk.org/ml/archives/dev/2016-January/031390.html
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Proposed changes in this structure

Device/Driver Structure

Existing structure

PMD Drivers

rte_driver

eth_driver

rte_pci_device rte_pci_driver

rte_eth_dev

dev_driver_list

pci_device_list pci_driver_list

• Virtual devices are also represented by a 

type of rte_driver (PMD_VDEV) and 

treated as PCI devices

• No space for non-PCI/non-vdevices

EAL Initialization

PMD Drivers

rte_driver

rte_device

rte_XXX_device

rte_soc_device

rte_vdev_device

rte_pci_device

rte_XXX_driver

rte_soc_driver

rte_vdev_driver

rte_pci_driver

pci_device_list

vdev_device_list

soc_device_list

pci_driver_list

vdev_driver_list

soc_driver_list

driver_list

device_list
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Proposed changes in this structure

rte_device

driver_list

device_list

PMD Drivers

rte_XXX_device

rte_vdev_device

rte_pci_device

rte_XXX_driver

rte_vdev_driver

rte_pci_driver

pci_device_list

vdev_device_list

soc_device_list

pci_driver_list

vdev_driver_list

soc_driver_list

Device/Driver Structure

Existing structure

PMD Drivers

rte_driver

eth_driver

rte_pci_device rte_pci_driver

rte_eth_dev

dev_driver_list

pci_device_list pci_driver_list

• Virtual devices are also represented by a 

type of rte_driver (PMD_VDEV) and 

treated as PCI devices

• No space for non-PCI/non-vdevices

EAL Initialization

rte_soc_driverrte_soc_device

rte_driver
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Device/Driver Structure

• Simpler Device  Driver hierarchy

 rte_driver/rte_device represents a generic driver/device, equivalent to a Bus

 rte_pci_driver/rte_pci_device represent an instantiation of rte_driver/rte_device

• Same is case for vdev, SoC, XXX

− Hotplug support

 Devices attach and detach functions are responsibility of a ‘bus’ – rte_device/rte_driver

• Open Points:

− How to represent resources – BDF format is too PCI specific; Soc’s may have different 

ways. 

− Devargs to be restructured

 How should a device be identified (blacklist/whitelist)
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Enabling SoC Support

• Jan Viktorin has proposed series of patches [1] which:

 Generalization of sysfs parsing routines – majorly movement into EAL common area

 Introducing rte_soc_driver, rte_soc_device (and other internal structures)

− It is parallel to rte_driver, eth_driver so need for generalization of device<->driver ABI/API.

 SoC registration and de-registration methods and their invocation from rte_eal_init()

− Maintaining new linked-lists for SoC devices/drivers (soc_driver_list, soc_device_list)

 Scanning for SoC specs using udev

− SoC devices are quite varied – a one-size-fits-all approach might not work.

− NXP devices are based on Platform driver and their initialization sequences are different

− Need for a generic series of init/deinit for devices which can be adapted for PCI/non-PCI devices seamlessly.

 Duplicating various PCI operations (attach/detach/devargs parsing) to suit SoC needs

[1] http://dpdk.org/ml/archives/dev/2016-May/038486.html
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VFIO Changes

• DPDK VFIO Mapping doesn’t support platform bus

− NXP’s DPAA is a Platform Bus design

• Resources are not directly discoverable and cannot be ‘scanned’

• Structures associated with devices need to be maintained across the life-time of PMD

− Current design is PCI dependent

• Assumes that devices are discoverable

− rte_eal_init()=>rte_eal_pci_probe()=>rte_eal_pci_probe_all/one_driver()=>rte_eal_pci_map_device()

− rte_eal_pci_map_device() finds the container, connects the group to it and performs DMA Mapping

 In case of NXP DPAA:

− Once containergroup are connected, devices within the group need to be scanned

− These devices are used for interfacing with the hardware by PMD for RX/TX

• Need to integrate Platform Bus with device probing

 When rte_eal_SoC_probe*() is done, post containergroup mapping, callbacks for SoC device 
mapping can be done

 These callbacks can be part of the rte_driver/rte_soc_driver structure
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What else can be improved:

• External Memory Pool support

 API sets which enable seamless usage without any confusion

• rte_pktmbuf_pool_create can use an external mempool, but rte_mempool_create cannot

• rte_pktmbuf_pool_create cannot iterate over objects, but rte_mempool_create can

• So, for external mempool support, application looses control:

− 1) Create New API or Modify rte_pktmbuf_pool_create( with..iterator..)

− 2) Make external pool support uniform. i.e. deprecate rte_mempool_create or augment it with mempool name.

• Crypto – generalizing the cryptodev framework to support different kind of hw

crypto interface

• Support for HW offload to Distributer/re-order, QoS and other libraries.
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Questions  ?

hemant.agrawal@nxp.com




