

Topic: A Deep Dive into Memory Access

Company: Intel Title: Software Engineer Name: Wang, Zhihong

A Typical NFV Scenario: PVP

Overview of Memory System

Overview of Memory System (cont'd)

Let's Do It!

First Impression

Unexpectedly...

Under The Hood

Under The Hood

Write-back

Go See Some C Code

desc_addr = gpa_to_vva(dev, desc->addr);
rte_prefetch0((void *)(uintptr_t)desc_addr);

Oh I see – S/W Prefetching to reduce latency

desc_addr = gpa_to_vva(dev, desc->addr);
rte prefetch0((void *)(uintptr t)desc addr);

hdr = (struct virtio_net_hdr *) ((uintptr_t)desc_addr); desc_avail = desc->len - vq->vhost_hlen; desc offset = vq->vhost hlen;

while (desc_avail != 0 || (desc->flags & VRING_DESC_F_NEXT) != 0) {
 /* This desc reaches to its end, get the next one */

return -1; desc = &vq->desc[desc->next];

* This mbuf reaches to its end, get a new one

if (unlikely(desc->next >= vq->size ||
 ++nr desc >= vq->size))

desc_addr = gpa_to_vva(dev, desc->addr);
rte prefetch0((void *)(uintptr t)desc addr);

PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);

mbuf avail = m->buf len - RTE PKTMBUF HEADROOM;

desc_offset = 0; desc avail = desc->len;

if (desc_avail == 0) {

/* Retrieve minitionet have

mbuf offset = 0;

Without S/W Prefetching

How About Guest In Another

Better NOT...

vhost memcpy: Guest on the same node vhost memcpy: Guest on a diff node Keep related processes on the same node **CPU** cycles CPU 132-memcpy size (bytes) memcpy size (bytes) Host -> Guest Guest -> Host Host -> Guest Guest -> Host Guest edit packet; No prefetching

rte_memcpy()? Why Even Bother?

AVX For Bandwidth

Alignment Matters

Takeaways

- See actual memory behaviors under the hood

 Intel[®] 64 and IA-32 Architectures Optimization
 Reference Manual
- Benefit from new IA technologies
 - AVX, DDIO...

Cache Allocation Technology

Noisy neighbor:

One core is requesting huge amount of data

What if another HIGH priority core is very latency sensitive?