

Next Gen Virtual Switch

CloudNetEngine Founder & CTO Jun Xiao

- Thoughts on next generation virtual switch
- Technical deep dive on CloudNetEngine virtual switch
- Q&A

Major vSwitches categorized by workloads

Enterprise type workloads		NFV type workloads
vSphere	KVM	KVM
Standard vSwitch	Linux Bridge	OVS-DPDK
vDS	OVS	
Cisco Nexus 1000v	Cisco Nexus 1000v	6WIND vSwitch
Cisco AVS		
HP FlexFabric 5900v		

Contexts – what's happened?

- SDN
 - Normally deal with "enterprise" workloads
 - Mainly focus on decoupling control & forwarding planes and control plane scalability
 - Virtual switch CPU efficiency is overlooked
- NFV
 - Mainly focus on "hairpin" network traffic performance
 - Virtual switch feature set is less considered
 - Exclusively using pre-allocated resources

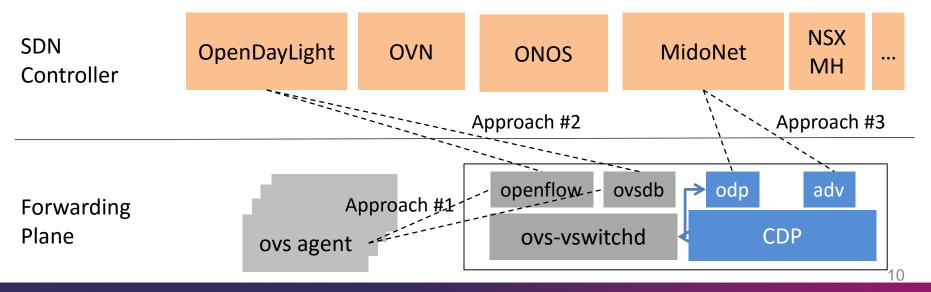
Contexts – Everything is application driven

- Client Server Era -> Mobile Cloud Era
 - Social, Mobile, Cloud, Big data
- Proliferated east-west network traffic in clouds
- Networking intelligences are shifting from core network to network edge
- Application agilities require network infrastructure to transform to a software-defined model

Key requirements on next generation virtual switch

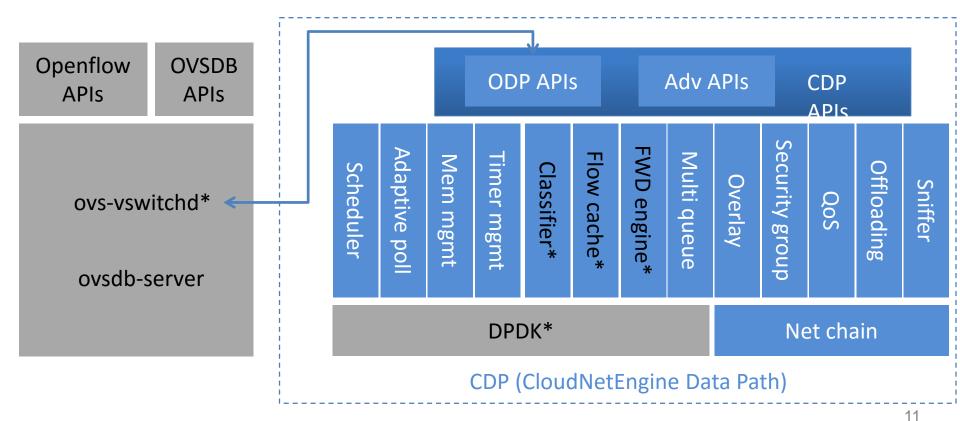
- Performance
 - Support variety of virtualized workloads
- CPU efficiency (part of performance, but highlight it here)
 - Improve ROI for massive cloud investments
- Feature richness
 - For both public and private cloud use cases
- Easy of integration
 - Live in the ecosystem

CloudNetEngine's thoughts


Enterprise type workloads		NFV type workloads
vSphere Ent	erprise/NKVt好pe workloads	KVM
Standard vSwitch	Linux Bridge KVM	OVS-DPDK
vDS	OVS	
Cisco Nexus 100	An unified virtual switch With	WIND vSwitch
Cisco AVS	high performance high efficiency feature richness	
HP FlexFabric 59	easy of integration	

Technical deep dive on CloudNetEngine virtual switch

To build a great virtual switch, we have to think out of box and break the silos.


Easy of integration – Live in the ecosystem

DATA PLANE DEVELOPMENT KIT

CloudNetEngine virtual switch architecture

Performance – rte_mbuf

- Put together fields which need reset in one cacheline, so reset can be vectorized
- Do bulk mbufs free when they are coming from the same mempool
- Make mbuf processing more robust (mbuf error is hard to fix)
 - Make a mbuf (or a mbuf chain) always integrity (pkt_len, data_len, next, nb_seg fields are quite relevant)
 - Do mbuf sanity check wherever possible and inject random allocation fault to catch errors

Performance – Instructions per cycle

- Parallelly processing packets as possible as we can in a reasonable batch
 - It's hard if there are branches for the parallelled logic
- For virtio vhost user backend rx/tx, partial logic can be parallelled as all valid packets use at least one device descriptor
- For flow extraction, it's hard as packets might have different format from very beginning of the extraction, i.e. L2 header

Performance – Load balance

- Place a new RX queue to the least loaded thread
- Migrate a heavy load RX queue to the least loaded thread
- "load" is calculated from most recent samplings on CPU usage, for thread load, some other pseudo metrics should also be factored in

CPU efficiency – Adaptive polling

- Busy polling is very bad for light load
- Userspace interrupt + polling is not good enough
- An adaptive interrupt + polling is needed
 - CPU usage doesn't need to be perfectly linear to network load
 - Performance for heavy load should be on par with pure polling

CPU efficiency – Packet Group metadata

- An unified architecture to support a variety of workloads
 - "NFV" workload means less features
 - "enterprise" workload means rich features
- Packet Group Metadata
 - Associated with a vector of packets
 - Virtual switch checks packet group metadata before entering a feature logic, thus per packet check is avoided

CPU efficiency – Save packet copy

- In normal case
 - VM <-> VM needs two packet copies
 - VM -> PNIC needs one packet copy
- Under TX zero copy
 - VM <-> VM needs only one packet copy
 - VM -> PNIC don't need packet copy
- Simple? But you have do it much more sophisticated
 - Needs a packet "done" notification mechanism to update virtio vrings
 - Have to copy reasonable length of headers to prevent guest attacks

Feature richness – Extensibility

- A lightweight and efficient framework (net chain) to plugin new features
 - It's RCU protected so that updating a net chain won't have any performance penalty on the datapath
 - A net chain can use packet group metadata to very quickly decide whether the net chain is applicable to the input packet vector or not

Feature richness – Security Group

- BPF with JIT is great to match on arbitrary packet fields
 - NPF of NetBSD is great, and it's very similar as Linux nftables
- Comparing to OVS conntrack based security group
 - OVS conntrack based security group leverages OVS recirculation mechanism which means flow tables must be lookuped again after a recirculation injection

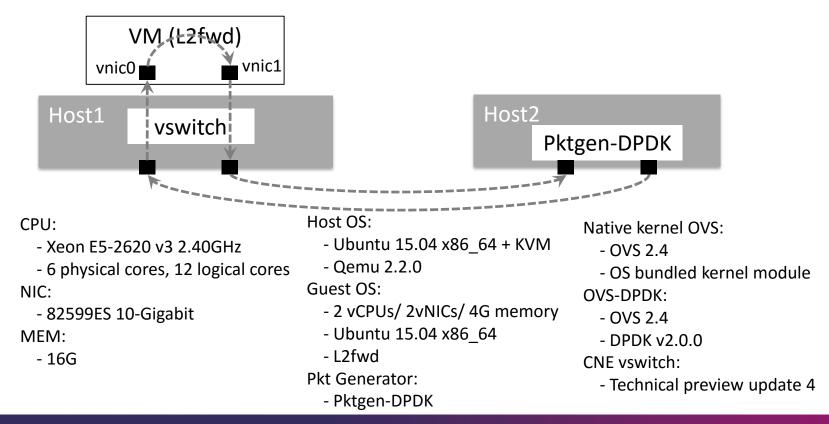
Feature richness – Overlay

- When tunnels encap/decap are completely done in userspace, do we have to do routing/neighbor control completely in userspace?
 - Linux kernel routing table (thus routing protocols) can be fully leveraged because each userspace TEP(tunnel endpoint) has also a corresponding kernel tap device
 - Neighbor management still needs some userspace solicited ARP requests because kernel ARP table entries can be timeouted

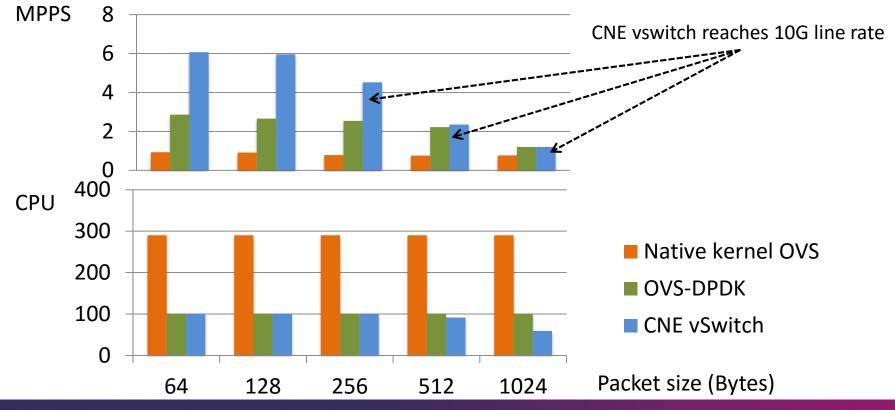
Feature richness – Overlay tunnel acceleration

- In a typical cloud environment, there are a lot of tunnels setup between L2 neighbors
- All existing tunnel protocols carry over non-trivial useless headers for such "neighbor tunnels"
- A tunnel acceleration method can be used
 - Adaptive MAC encapsulation when acceleration prerequisites are met
 - All "tunnel metadata" are still preserved thus transparent to up layer SDN solutions
 - E.g. in standard VXLAN case, 64 bytes workload can only have 56% effective utilization rate, while the acceleration mechanism can increase to 74.4%

Feature richness – Offloading

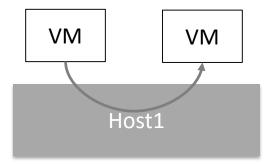

- There are quite a few offloading use cases in a virtual switch
 - VM <-> VM: native S/W offloading
 - VM -> PNIC: native H/W offloading
 - VM -> PNIC(w/ overlay offload): overlay H/W offloading
 - VM -> PNIC(w/o overlay offload): overlay S/W offloading

Feature richness – Sniffer


- What tool is used most often for network troubleshooting?
 - tcpdump
- How to get it done?
 - Based on BPF JIT and pcap-filter syntax can be fully supported
 - libpcap extention for userspace virtual switch port capture
 - tcpdump frontend don't need change at all

Performance comparisons

NFV workload test configuration



NFV workload performance comparisons

DATA PLANE DEVELOPMENT KIT

Enterprise workload test configuration

CPU:

- Xeon E5-2620 v3 2.40GHz

- 6 physical cores, 12 logical cores NIC:

- 82599ES 10-Gigabit MEM:

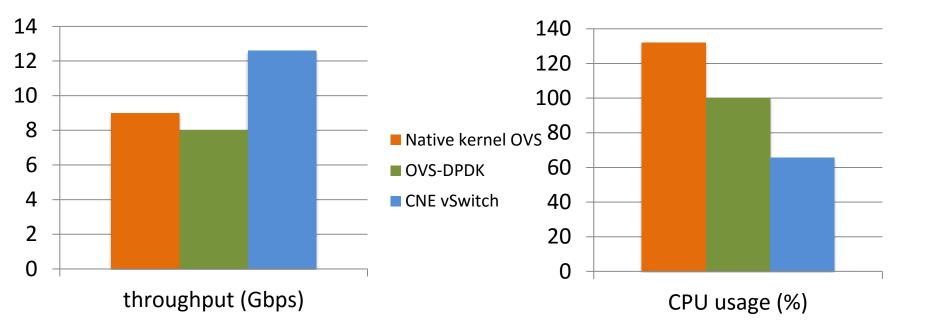
- 16G

Host OS:

- Ubuntu 15.04 x86_64 + KVM
- Qemu 2.2.0

Guest OS:

- Ubuntu 15.04 x86_64
- iperf 2.05


Native kernel OVS:

- OVS 2.4
- OS bundled kernel module OVS-DPDK:
 - OVS 2.4
 - DPDK v2.0.0

CNE vswitch:

- Technical preview update 4

Enterprise workload performance comparisons

Q & A

www.cloudnetengine.com

info@cloudnetengine.com

Twitter: @cloudnetengine

