
Light & NOS

Dan Li

Tsinghua University

The Power of DPDK

 Performance gain

 As claimed: 80 CPU cycles per packet

 Significant gain compared with Kernel!

2

 What we care more…

 How to leverage the performance gain to serve more

applications

 A great opportunity

 Decoupling network operation from the kernel /

operation system

 Network can thus develop independently

State-of-the-Art

 Improving the performance of Linux network stack

 Too many works…

 mTCP

 Based on DPDK

 Realizing network operations as a thread in application

 6wind

 Do not know the technical details

3

 What we want

 A DPDK-based network stack that can provide the

functionality of network operating system

Light: a Polling-based, General-purpose, User-

space, High-performance Network Stack

4

Light

Raw packets

Payload

Non-network APIIncoming

data

API call

ApplicationsNetwork-related API

User

space

Kernel

space

NIC

Kernel’s

stack

Linux

kernel

Dll,

Signal

Memory, init.,

timer, net. I/O

outgoing

data

Light Architecture

5DPDK

Transport
layer

Network
layer

Data link
layer

L
I
G
H
T

Light
Parser

Light
API

Light
Daemon

Accept Ready Queue

Close Ready Queue

TX Ready Queue

Command Queue

RX Queue

TX Queue

Socket

Shared Hugepage Memory

Recv Ready Queue

Enqueue

Design Goals

 Goal #1: minimize the modification of applications

 Ease the development of new applications

 Benefit the porting of legacy applications

 Goal #2: minimize the performance affect to

applications

 The purpose of DPDK is to increase the I/O performance

 We do not want that the performance of application is

sacrificed due to DPDK

6

Goal #1: Minimizing the

Modification of Apps.

 Light provides network-related APIs as a lib to apps.

 socket(), listen(), bind(), accept(), connect(), shutdown(),
close(), socketpair()

 send(), receive(), sendto(), recvfrom(), sendmsg(), recvmsg(),
read(), write(), readv(),writev()

 setsockopt(), getsockopt(), ioctl(), fcntl()

 epoll (), select(), poll()

 Challenges

 How to mask the same network APIs of the kernel?

 How to differentiate the two FD spaces (Light and kernel) in
the application?

 Now we need to add several lines of codes in app.

 DPDK initialization, DLL management 7

API Mask

 Applications uses dlsym() to redirect the function
address to Light

 Thus the same network APIs in the kernel are masked

 Do not need to modify the API calls of the application

 Light’s APIs follow the same format of POSIX APIs

 Do not need to modify the kernel

 Help the system stability

8

Two FD Spaces: Problems

 FD confusion

 Both sockets and files are referred to by FDs

 E.g., read(), write(), epoll()

 Problems of Epoll

 Epoll in the application can wait for the events of network

sockets, file events, as well as inter-process sockets

 Epoll for network sockets is supported in Light

 Epoll for file events is supported by kernel

 Epoll for inter-process sockets can be either realized in Light or

supported by kernel

 The two Epolls cannot work in blocking mode simultaneously

 Logic problem

9

Two FD Spaces: Our Solution

 For the FD confusion problem

 Light assigns FDs from the upper bound of FD space, because

the Kernel assigns FDs from the lower bound of the space

 For the two Epoll problem

 If we want to detect the events of both FD spaces

 Intercept Epoll and let it always work in non-blocking mode

 Cons.: app. cannot be suspended, CPU resource waste

 If we want to save CPU resource for blocking calls in app.

 Realize network sockets and inter-process sockets in Light

 Cons.: Cannot detect file events

10

Goal #2: Minimizing the

Performance Affect to App.

 Challenge 1: DPDK I/O polling in Light occupies
100% CPU resource

 App. might compete with Light for the CPU resource

 Challenge 2: How to minimize the overhead of inter-

process communication

 Both Light and application are user-space processes

 The inter-process communication between Light and app.

may incur high overhead to apps.

 Compared with if app. uses kernel network stack

11

CPU Competition

between Light & APPs

 Solution

 Run Light Parser and Light Daemon in Light cores

 Run App. and Light API in App. cores

 Light cores and App. cores are physically separated

 I/O polling only occurs in Light cores, not in App.
cores

12

Light cores (Light parser

and Light daemon)

App. Cores (Light

API and app.)

Receive data

Send data

Inter-process Communication

between App. & Light

 Basic mechanism

 Lockless queue based on shared memory

 RTE-ring in DPDK

 Blocking API calls in app.

 Epoll(), recv(), send(), accept(), connect()

 Kernel can suspend the app. process and wake it up after

data arrives, which saves the CPU resource

 Light is a user-space process and cannot do what kernel

does

13

Possible Methods

 Method 1:

 If there is no event in the queue, the (Light API in) app.

process goes to sleep

 When an event comes, Light daemon uses signal to wakeup

the process (batch process to further reduce the overhead)

 Problem: if the last event fails to wake up the app. process

 Signal can be lost

 Time sequence error due to process management: an app. process

receives the wakeup signal before it goes to sleep

 Method 2:

 Similar way as in hybrid spinlock

 While() and sleep for some time inside

 Problem: still add some CPU overhead to app. 14

Our Solution

 Method 1 for Epoll()

 Method 2 for send(), receive(), connect(), accept()

 Reasons

 The Epoll queue maintains all the events for all sockets of

the process

 Any kind of event from any socket can wakeup the app. Process

 The queue of the other 4 APIs only maintains a certain kind

of events for a certain socket

 The probability exists that the last event fails to wakeup the app.

process

15

Features of Light

 Minimal modification of applications

 Run as a general-purpose service for applications

 Currently app. only has to add several lines of codes

 Significant performance improvement

 Inherit the advantage of DPDK

 Minimize the performance affect to apps. due to DPDK

 Complete protocol stack

 TCP (including congestion control), UDP, ICMP, IP, UDP,

ARP, Ethernet…

16

Demonstration

 We run Nginx on Light and Linux kernel separately

 Single process for Nginx

 Apache benchmark

 Concurrent requests processed on Light more than

doubles that in Linux

17

Thanks!
tolidan@tsinghua.edu.cn

18

