
Light & NOS

Dan Li

Tsinghua University



The Power of DPDK

 Performance gain

 As claimed: 80 CPU cycles per packet

 Significant gain compared with Kernel!
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 What we care more…

 How to leverage the performance gain to serve more 

applications

 A great opportunity

 Decoupling network operation from the kernel / 

operation system

 Network can thus develop independently



State-of-the-Art

 Improving the performance of Linux network stack

 Too many works…

 mTCP

 Based on DPDK

 Realizing network operations as a thread in application

 6wind

 Do not know the technical details
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 What we want

 A DPDK-based network stack that can provide the 

functionality of network operating system



Light: a Polling-based, General-purpose, User-

space, High-performance Network Stack
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Light Architecture
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Design Goals

 Goal #1: minimize the modification of applications

 Ease the development of new applications

 Benefit the porting of legacy applications

 Goal #2: minimize the performance affect to 

applications

 The purpose of DPDK is to increase the I/O performance

 We do not want that the performance of application is 

sacrificed due to DPDK
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Goal #1: Minimizing the 

Modification of Apps.

 Light provides network-related APIs as a lib to apps.

 socket(), listen(), bind(), accept(), connect(), shutdown(), 
close(), socketpair() 

 send(), receive(), sendto(), recvfrom(), sendmsg(), recvmsg(), 
read(), write(), readv(),writev()

 setsockopt(), getsockopt(), ioctl(), fcntl()

 epoll (), select(), poll()

 Challenges

 How to mask the same network APIs of the kernel?

 How to differentiate the two FD spaces (Light and kernel) in 
the application?

 Now we need to add several lines of codes in app.

 DPDK initialization, DLL management 7



API Mask

 Applications uses dlsym() to redirect the function 
address to Light

 Thus the same network APIs in the kernel are masked

 Do not need to modify the API calls of the application

 Light’s APIs follow the same format of POSIX APIs

 Do not need to modify the kernel

 Help the system stability
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Two FD Spaces: Problems

 FD confusion

 Both sockets and files are referred to by FDs

 E.g., read(), write(), epoll()

 Problems of Epoll

 Epoll in the application can wait for the events of network 

sockets, file events,  as well as inter-process sockets

 Epoll for network sockets is supported in Light

 Epoll for file events is supported by kernel

 Epoll for inter-process sockets can be either realized in Light or 

supported by kernel

 The two Epolls cannot work in blocking mode simultaneously

 Logic problem
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Two FD Spaces: Our Solution

 For the FD confusion problem

 Light assigns FDs from the upper bound of FD space, because 

the Kernel assigns FDs from the lower bound of the space

 For the two Epoll problem

 If we want to detect the events of both FD spaces

 Intercept Epoll and let it always work in non-blocking mode

 Cons.: app. cannot be suspended, CPU resource waste

 If we want to save CPU resource for blocking calls in app.

 Realize network sockets and inter-process sockets in Light

 Cons.: Cannot detect file events
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Goal #2: Minimizing the 

Performance Affect to App.

 Challenge 1: DPDK I/O polling in Light occupies 
100% CPU resource

 App. might compete with Light for the CPU resource

 Challenge 2: How to minimize the overhead of inter-

process communication

 Both Light and application are user-space processes

 The inter-process communication between Light and app. 

may incur high overhead to apps.

 Compared with if app. uses kernel network stack 
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CPU Competition 

between Light & APPs

 Solution

 Run Light Parser and Light Daemon in Light cores

 Run App. and Light API in App. cores

 Light cores and App. cores are physically separated

 I/O polling only occurs in Light cores, not in App. 
cores
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Inter-process Communication 

between App. & Light

 Basic mechanism

 Lockless queue based on shared memory

 RTE-ring in DPDK

 Blocking API calls in app.

 Epoll(), recv(), send(), accept(), connect()

 Kernel can suspend the app. process  and wake it up after 

data arrives, which saves the CPU resource

 Light is a user-space process and cannot do what kernel 

does
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Possible Methods

 Method 1:

 If there is no event in the queue, the (Light API in) app. 

process goes to sleep

 When an event comes, Light daemon uses signal to wakeup 

the process (batch process to further reduce the overhead)

 Problem: if the last event fails to wake up the app. process

 Signal can be lost

 Time sequence error due to process management: an app. process 

receives the wakeup signal before it goes to sleep 

 Method 2:

 Similar way as in hybrid spinlock

 While() and sleep for some time inside

 Problem: still add some CPU overhead to app. 14



Our Solution

 Method 1 for Epoll()

 Method 2 for send(), receive(), connect(), accept()

 Reasons

 The Epoll queue maintains all the events for all sockets of 

the process

 Any kind of event from any socket can wakeup the app. Process

 The queue of the other 4 APIs only maintains a certain kind 

of events for a certain socket

 The probability exists that the last event fails to wakeup the app. 

process 
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Features of Light

 Minimal modification of applications

 Run as a general-purpose service for applications

 Currently app. only has to add several lines of codes

 Significant performance improvement

 Inherit the advantage of DPDK

 Minimize the performance affect to apps. due to DPDK

 Complete protocol stack

 TCP (including congestion control), UDP, ICMP, IP, UDP, 

ARP, Ethernet…
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Demonstration

 We run Nginx on Light and Linux kernel separately

 Single process for Nginx

 Apache benchmark

 Concurrent requests processed on Light more than 

doubles that in Linux
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Thanks!
tolidan@tsinghua.edu.cn
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