Light & NOS

Dan LI
Tsinghua University

The Power of DPDK

= Performance gain
= As claimed: 80 CPU cycles per packet
= Significant gain compared with Kernel!

= \What we care more...

= How to leverage the performance gain to serve more
applications

= A great opportunity

= Decoupling network operation from the kernel /
operation system

= Network can thus develop independently

State-of-the-Art

Improving the performance of Linux network stack

= Too many works...

mTCP
= Based on DPDK
= Realizing network operations as a thread in application

owind
= Do not know the technical detalils

What we want

= A DPDK-based network stack that can provide the
functionality of network operating system

Light: a Polling-based, General-purpose, User-
space, High-performance Network Stack

/Light \\Ietwork-related s Applications
O
API cal — EF
0 e 0 e e e Payload NG NN User
N o y Y space
| . DII emory, INIt.,
ncoming , _he
ata Signal I mer, net. 1/0 Non-pgtwork API
Linux
kernel e Kernel
; crnel S space
outgoing (Sl P
dataa Ra ckets

S S ;

—_—>
Enqueue

Light Architecture

Shared Hugepage Memory

Light
Parser

Light
Daemon

Transport
layer

\ 4

Accept Ready Queue

Network
layer

\ 2

Close Ready Queue

TX Ready Queue

Data link
layer

Recv Ready Queue

Command Queue

Socket
RX Queue

TX Queue

Light
API

DPDK

- TG — I~

Design Goals

= Goal #1: minimize the modification of applications
= Ease the development of new applications
= Benefit the porting of legacy applications

= Goal #2: minimize the performance affect to
applications
= The purpose of DPDK is to increase the 1/O performance

= We do not want that the performance of application is
sacrificed due to DPDK

Goal #1: Minimizing the
Modification of Apps.

= Light provides network-related APls as a lib to apps.

= socket(), listen(), bind(), accept(), connect(), shutdown(),
close(), socketpair()

= send(), receive(), sendto(), recvfrom(), sendmsg(), recvmsg(),
read(), write(), readv(),writev()

= setsockopt(), getsockopt(), ioctl(), fcntl()
= epoll (), select(), poll()

= Challenges
= How to mask the same network APIs of the kernel?

= How to differentiate the two FD spaces (Light and kernel) in
the application?

= Now we need to add several lines of codes in app.
= DPDK initialization, DLL management 7

APIl Mask

= Applications uses disym() to redirect the function
address to Light

= [hus the same network APIs in the kernel are masked

= Do not need to modify the API calls of the application
= Light’s APIs follow the same format of POSIX APIs

= Do not need to modify the kernel
= Help the system stability

Two FD Spaces: Problems

= FD confusion
= Both sockets and files are referred to by FDs
» E.g., read(), write(), epoll()

= Problems of Epoll

= Epoll in the application can wait for the events of network
sockets, file events, as well as inter-process sockets
« Epoll for network sockets is supported in Light
« Epoll for file events is supported by kernel
« Epoll for inter-process sockets can be either realized in Light or
supported by kernel
= The two Epolls cannot work in blocking mode simultaneously
= Logic problem

Two FD Spaces: Our Solution

= For the FD confusion problem

= Light assigns FDs from the upper bound of FD space, because
the Kernel assigns FDs from the lower bound of the space

= For the two Epoll problem

= |If we want to detect the events of both FD spaces
« Intercept Epoll and let it always work in non-blocking mode
= Cons.: app. cannot be suspended, CPU resource waste
= |If we want to save CPU resource for blocking calls in app.

« Realize network sockets and inter-process sockets in Light
» Cons.: Cannot detect file events

10

Goal #2: Minimizing the
Performance Affect to App.

= Challenge 1: DPDK 1/0 polling in Light occupies
100% CPU resource

= App. might compete with Light for the CPU resource
= Challenge 2: How to minimize the overhead of inter-
process communication

= Both Light and application are user-space processes

= The Inter-process communication between Light and app.
may incur high overhead to apps.
= Compared with if app. uses kernel network stack

11

CPU Competition
between Light & APPs

= Solution
= Run Light Parser and Light Daemon in Light cores
= Run App. and Light APl in App. cores
= Light cores and App. cores are physically separated

= /O polling only occurs in Light cores, not in App.
cores

Light cores (Light parser ~ App. Cores (Light
and Lightldaemon) API andlapp.)
[] []

Receive data

jninin 4
P)

Send data {

/2

12

Inter-process Communication
between App. & Light

= Basic mechanism
= Lockless queue based on shared memory
= RTE-ring in DPDK

= Blocking API calls in app.

= Epoll(), recv(), send(), accept(), connect()

= Kernel can suspend the app. process and wake it up after
data arrives, which saves the CPU resource

= Lightis a user-space process and cannot do what kernel
does

13

Possible Methods

= Method 1:
= If there is no event in the queue, the (Light API in) app.
process goes to sleep

= When an event comes, Light daemon uses signal to wakeup
the process (batch process to further reduce the overhead)

= Problem: if the last event fails to wake up the app. process

« Signal can be lost
= Time sequence error due to process management: an app. process
receives the wakeup signal before it goes to sleep

= Method 2:
= Similar way as in hybrid spinlock
= While() and sleep for some time inside
= Problem: still add some CPU overhead to app. 14

Our Solution

= Method 1 for Epoll()
= Method 2 for send(), receive(), connect(), accept()

= Reasons

= The Epoll queue maintains all the events for all sockets of
the process
= Any kind of event from any socket can wakeup the app. Process
= The queue of the other 4 APIs only maintains a certain kind
of events for a certain socket

= The probability exists that the last event fails to wakeup the app.
process

15

Features of Light

= Minimal modification of applications

= Run as a general-purpose service for applications

= Currently app. only has to add several lines of codes
= Significant performance improvement

= Inherit the advantage of DPDK
= Minimize the performance affect to apps. due to DPDK

= Complete protocol stack

= TCP (including congestion control), UDP, ICMP, IP, UDP,
ARP, Ethernet...

16

Demonstration

= We run Nginx on Light and Linux kernel separately
= Single process for Nginx
= Apache benchmark

= Concurrent requests processed on Light more than
doubles that in Linux

17

Thanks!

tolidan@tsinghua.edu.cn

18

