
USERSPACE October 8-9 Dublin

The 7 Deadly Sins
of Packet Processing

Venky Venkatesan & Bruce Richardson



The CPU Core

Source: Intel® 64 and IA-32 Architectures: Optimization Reference Manual



Unpredictable Branches

Joe Thorn / CC-BY-NC-ND [https://www.flickr.com/photos/joethorn/272181350]

Not all branches are bad!

If branch is unpredictable, 

performance will suffer!

The first time a branch is 

encountered … 



Helping the branch predictor …

• Predicts conditional branches, direct & indirect calls & jumps, 
returns, loop iterations

Guide the compiler with likely()/unlikely() on error cases, and 
where humans can be certain
Wrongly structured code can waste fetch/decode bandwidth

Let the branch predictor work on runtime data dependent 
branches

Inline … gives the BTB more context, but bloats code

Source: Intel® 64 and IA-32 Architectures: Optimization Reference Manual



Sharing Cache Lines

Need to avoid the latency of having cache-lines ping-
pong between different cores on a system.

Pierre-Yves Beaudouin / Wikimedia Commons / CC-BY-SA-3.0

https://commons.wikimedia.org/wiki/Main_Page
http://creativecommons.org/licenses/by-sa/3.0/


Some basics …

Sandy Bridge
Ivy Bridge

Haswell Skylake

L1 data access (cycles) 4 4 4

L1 Peak Bandwidth (bytes/cycle) 2x16 2x32 load
1x32 store

2x32 load
1x32 store

L2 data Access (cycles) 12 11 12

L2 peak bandwidth (bytes/cycle) 1x32 64 64

Shared L3 Access (cycles) 26-31 34 44

L3 peak bandwidth (bytes/cycle) 32 - 32

Data hit in L2 or L1D Dcache of another core 43 – clean hit
60 – modified hit

• BUT memory is ~70+ ns away (i.e. 2.0 GHz = 140+ cycles)

Source: Intel® 64 and IA-32 Architectures: Optimization Reference Manual



Incorrect Prefetching

A cache miss can use up your full packet budget, so make sure 
you pull in your data before you need it!

Johnmoore6 / Wikimedia Commons / CC-BY-SA-3.0 [https://commons.wikimedia.org/wiki/File:Irish_600kg_euro_chap_2009.JPG]

https://commons.wikimedia.org/wiki/Main_Page
http://creativecommons.org/licenses/by-sa/3.0/


Prefetching …

• Hardware pre-fetcher will try to predict … and will fetch data 
that isn’t needed (adds overhead)

• With packed data structures, it sometimes fetches data that an 
other core uses  (inadvertently sharing cache lines)

• But in most cases, hardware prefetchers hugely improve 
application performance



Per-Packet Operations

Any overhead gets magnified when done per-packet.



Some of these aren’t quite obvious … 

• Memory mapped I/O & UC (Uncacheable) operations

• Atomic increment/decrement/Compare-swap

• Ring enq/deq (especially those that use atomics)

• Locks 



Incorrect Inlining

Trade-off: function calls have 
an overhead, but add flexibility



In-lining …

• Eliminates parameter passing overhead

• Increases optimization opportunities for the compiler

• More specific branch prediction context

• Mis-predicted branch penalties in a small function are higher 
e.g. if a branch misprediction results in a return being 
prematurely taken



Bad Data Structures

Remember to separate per-lcore data onto different cachelines

Terence Ong / CC-BY-2.5 [from: https://en.wikipedia.org/wiki/PET_bottle_recycling#/media/File:NEA_recycling_bins,_Orchard_Road.JPG]

http://creativecommons.org/licenses/by/2.5/legalcode


Making System Calls

Like flushing away cycles….


