
Userspace 2015 | Dublin

A Symmetric Cryptography
framework for DPDK

project scope

• mbuf burst oriented APIs for enqueuing and dequeuing of cryptographic workloads
on devices.

• Creation of a symmetric Crypto API and device framework which is independent of
the crypto device implementation.

• Support for chaining of crypto cipher and hash transforms in a single operation
request.

• Session based and session-less crypto operations.

scheduling crypto workloads

• Fundamentally the DPDK crypto framework supports the scheduling of symmetric
crypto operations using a mbuf burst oriented asynchronous APIs in the same vain
as our ethdev rx/tx burst functions.

uint16_t rte_cryptodev_enqueue_burst (uint8_t dev_id, uint16_t qp_id,
struct rte_mbuf **pkts, int16_t nb_pkts);

uint16_t rte_cryptodev_dequeue_burst (uint8_t dev_id, uint16_t qp_id,
struct rte_mbuf **pkts, uint16_t nb_pkts);

• A new crypto operation pointer has been added to the mbuf structure and a new
offload flag PKT_TX_CRYPTO_OP which have to be set in the mbuf before a crypto
operation can be requested.

crypto primitives

/** Symmetric Cipher Algorithms */
enum rte_crypto_cipher_algorithm {

RTE_CRYPTO_SYM_CIPHER_NULL,
RTE_CRYPTO_SYM_CIPHER_AES_CBC,
RTE_CRYPTO_SYM_CIPHER_AES_GCM,
...

}

/** Symmetric Cipher Direction */
enum rte_crypto_cipher_operation {

RTE_CRYPTO_SYM_CIPHER_OP_ENCRYPT,
RTE_CRYPTO_SYM_CIPHER_OP_DECRYPT

}

/** Symmetric Authentication / Hash Algorithms */
enum rte_crypto_auth_algorithm {

RTE_CRYPTO_SYM_HASH_NONE,
RTE_CRYPTO_SYM_HASH_SHA1,
RTE_CRYPTO_SYM_HASH_SHA1_HMAC,
RTE_CRYPTO_SYM_HASH_SHA224,
….

}

/** Symmetric Authentication / Hash Operations */
enum rte_crypto_auth_operation {

RTE_CRYPTO_SYM_HASH_OP_DIGEST_VERIFY,
RTE_CRYPTO_SYM_HASH_OP_DIGEST_GENERATE

}

crypto transforms

/**Crypto transform structure. */
struct rte_crypto_xform {

struct rte_crypto_xform *next;
enum rte_crypto_xform_type type;
union {

struct rte_crypto_auth_xform auth;
struct rte_crypto_cipher_xform cipher;

};
};

/** Authentication Transform parameters */
struct rte_crypto_auth_xform {

enum rte_crypto_auth_operation op;
enum rte_crypto_auth_algorithm algo;
struct rte_crypto_key key;
uint32_t digest_length;
uint32_t add_auth_data_length;

};

/** Cipher Transform parameters */
struct rte_crypto_cipher_xform {

enum rte_crypto_cipher_operation op;
enum rte_crypto_cipher_algorithm algo;
struct rte_crypto_key key;

};

session management

• Sessions are used to manage information such as expand cipher keys and HMAC
IPADs and OPADs, which need to calculated for a particular crypto operation, but are
immutable on a packet to packet basis for a flow.

• Crypto sessions cache this immutable data in a optimal way for the underlying PMD
and this allows further acceleration of the offload of crypto workloads.

struct rte_cryptodev_session *
rte_cryptodev_session_create(uint8_t dev_id, struct rte_crypto_xform *xform);

struct rte_cryptodev_session *
rte_cryptodev_session_free(struct rte_cryptodev_session *session);

session pool management

• The crypto device framework provides a set of session pool management APIs for the
creation and freeing of the sessions

• The framework also provides hooks so the PMDs can pass the amount of memory
required for that PMDs private session parameters, as well as initialization functions
for the configuration of the session parameters and freeing function so the PMD can
managed the memory on destruction of a session

• Sessions created on a particular device can only be used on crypto devices of the
same type, and if you try to use a session on a device different to that on which it was
created then the crypto operation will fail

crypto operations

• Crypto operation data structures must be attached to each mbuf which you wish to
apply a crypto transform to.

• It specifies the offsets and length of the data into the mbuf payload which is to be
operated on.

• It contains pointers to IV, digest and additional authentication data, set as required,
which can be in the mbuf or at a different memory location. When using a hw
accelerators the physical addresses must be set for these parameters.

• Finally the crypto operation contains either a pointer to the crypto session or in the
case of a session-less operation a pointer to the first element of a xform chain.

crypto operations

mbuf header headroommbuf header headroom payload

xform xform
sess
ptr

cipher data
offset/len

IV
data/len

auth data
offset/len

digest
data/len

header Private session data

Data DigestIV

mbuf

crypto_op

cryptodev_session

We can pre allocate xform structs if we
are using session-less operations

add
data/len

operation pools

• As crypto operations are assigned on a per packet basis, and therefore need to be
allocated in the data path. We have create some pktmbuf like functions for managing
per allocated crypto operations mempools.

• Note that the pool create function takes a nb_xforms parameter, this can be used to
allocate memory for xform chains if you are planning on using session-less
operations.

struct rte_mempool *rte_crypto_op_pool_create (const char *name, unsigned nb_ops,
unsigned cache_size, unsigned nb_xforms, int socket_id);

struct rte_crypto_op_data *rte_crypto_op_alloc (struct rte_mempool *mp);

void rte_crypto_op_free (struct rte_crypto_op_data *op);

session-less operations

• This allows crypto operations to be submitted to a crypto device without the need to
have created a cached session.

struct rte_crypto_op_data * rte_crypto_op_alloc_sessionless (struct rte_mempool *mp,
unsigned nb_xforms);

• Returns crypto op with session-less flag set and transform chain pointers setup.

• User is required to set transform type and populate the parameters needed.

crypto_op->xform->type = RTE_CRYPTO_XFORM_CIPHER

crypto_op->xform->next->type = RTE_CRYPTO_XFORM_HASH

Implemented PMD’s

AES-NI multi-buffer PMD

• A purely software based PMD.

• Takes advantage of Advanced Encryption Standard New Instructions (AES-NI)
instructions to improve the speed of performing AES encryption and decryption on
core.

• The PMD is a light weight wrapper around the multi-buffer library

• It also leverages the vectorised instructions to further accelerate both cipher and
authenatication processing.

• Whitepaper: http://www.intel.com/content/www/us/en/intelligent-systems/intel-
technology/fast-multi-buffer-ipsec-implementations-ia-processors-paper.html

• Download: https://downloadcenter.intel.com/download/22972

http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-paper.html
https://downloadcenter.intel.com/download/22972

QAT PMD

• PMD is a data path driver for Intel’s QuickAssist Technology specificly supporting the
DH89xx series (Coleto Creek) of accelerators.

• Provides up to 50 Gbps of bulk crypto.
• Cryptographic Primitives Supported

• Symmetric ciphers: AES, 3DES/DES, RC4, Kasumi, Snow3G …
• Message Digest/Hash (MD5, SHA1, SHA2) and Authentication (HMAC, AES-XCBC)
• Algorithm Chaining (One Cipher and one Hash in a single operation) and

Authenticated Encryption (AES-GCM, AES-CCM)
• Public key cryptography: RSA, DSA, DH, ECDSA, ECDH

• Data Compression Primitives Supported
• Compression and Decompression
• Algorithms: Deflate (LZ77 plus Huffman coding with gzip or zlib header)
• Stateful and stateless compression and decompression

QAT PMD

• Still requires the PF kernel driver
• Enabling SR-IOV on the QAT device to expose

multiple VFs.
• Can support up to 32 VFs.

• Supports 2 queue pairs per VF.
• Reserved space to allow compression and

asymmetric queue pairs to be added at a later
date.

64 queue pairs - each VF has 2 symmetric queue pairs.

IA

Symmetric crypto

DH895x

Symmetric Service Arbiter
(WRR)

0 1

VF0

62 63

VF31

Performance

Throughput performance

• Created performance tests to the examples/test applications to allow
measurement of baseline performance on your platform.

• RTE>>cryptodev_qat_perftest
• RTE>>cryptodev_aesni_mb_perftest

• Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz
• Intel® QuickAssist Adapter 8950 (PCIe Gen 3 x8)

Single core throughput test

0 500 1000 1500 2000 2500

Packet Size

AES128_CBC_SHA256_HMAC Throughput (Gbps)

AES-NI Multi buffer QAT

Future Work

future work

• Adding asymmetric crypto to data path.

• Development of an DPDK accelerated IPsec solution based on the BSD kernel
stack.

