
Userspace 2015 | Dublin

Hyperscan
Software Pattern Matching

DPI Overview

DPI is a function that classifies Packets with
two primary methods
• Parsing – Identifies application based on

protocol and content

• Pattern Matching – Matches signatures in
the packet to a database using RegEx or
Fixed Strings
• RegEx = Higher compute, simple to manage
• Fixed String = Lower compute, complex to

manage

Network

Infrastructure

TAP

Analytics

QoS/QoE

Forensics

Signatures

IDSNetwork Traffic

Alerts

= { Sig:/.*evil.*/}

12evil34

Innocent

Pattern Matching

• Pattern matchers are at the heart of most
security applications.

• As threats become complex, more intensive
inspection is needed, but without application
slow-down.

• Purpose-build hardware may cope with line-
rate performance but time-to-market and
maintenance cost is high.

• Software pattern matching provides the
performance and scalability needed for the
rapidly changing landscape.

SDN

NFV

Server/DC

Big Data

Security

Routing & Switching

Wireless

Cloud Services
Policy Enforcement

Search

Threat Prevention

Node, Controller Orchestration
SDN/NFVBandwidth Management

Mobile Data Offload

Service Assurance Management

Hyperscan

Many Use cases

Hyperscan

• Software Pattern Matching engine
• Regex and Fixed-string matching
• High performance
• Low latency, compile time, memory

• Scales IA (Atom to Xeon)
• Utilizes SIMD (SSE.x) for highest

performance
• Portable, Easy to Integrate

• Simple API; 32/64-bit systems
• OS independent

• Recent Release
• Hyperscan 3.4

• Intrusion
Detection/Prevention

• Firewall
• Unified Threat Management
• Content Filtering
• Application Identification

Application

Application Engine
Database

Vendor
Signatures

Operating System

Hyperscan

CPU/Platform

Appliance, Router, Switch,
Gateway., Server Blade, NIC

Pattern Matching Engine

OS,
Virtual OS

Hyperscan Structure Summary

• Regular expressions are parsed into state machines.
• Non-deterministic finite automata (NFA)
• Deterministic finite automata (DFA)

• Engines are compiled into databases in terms of
bytecode.

• During runtime, bytecode are used to search for
patterns in data streams.
• Block/streaming mode

Hyperscan

Database Compiler
Rules,

Signatures

Packets

IN

Packets

OUT

High Speed Software

Pattern Matching

xxxxabcxxxxxxxxdefxx

xxxxab xdefxxcxxxxxxx

x x x a b c x x x x x x x d e f x x

Time (earlier writes to later writes)

Example Automata Engines
• Sample regular expression Search string

/baz[^z]*bar/ “babazcbar”

• NFA engine

• DFA engine

• Optimized DFA engine

Performance Tradeoffs

Hyperscan Performance

• Using Tier-1 OEM commercial IPS signature
database

• HTTP test traffic; real world
• Rangeley (8-core, 2.4Ghz): ~3Gbps (1 core) scaling

to 36Gbps (8-core)
• Haswell-EP: 293Gbps

• Intel® Xeon ® CPU E5-2658 v3 @ 2.20GHz
• With hyperthreading

Note: Numbers are subject to change using
different benchmarking

IA Drives Performance

• Cache rich architecture
• High bandwidth to Level 1 and Level 2 cache
• Large L2 and L3 allows matching tables for literal matching to stay cache

resident
• Large L2 is unshared which means, unlike much of IA competition,

scaling keeps going – unshared L2 bandwidth is per-core not per-chip
• Hyperthreading enables additional performance (15-20% is typical)
• Instruction sets

• Process large numbers of characters using SIMD: SSE2, SSSE3
• SIMD operations are resource friendly and fast on IA; enables large

matching engines e.g. NFAs with big state counts
• AVX2.0 enables processing of large amounts of input data in one step
• BMI1/BMI2 also a 1:1 match for many pattern matching primitives:

PEXT/PDEP replace a 10-30 instruction loop with 1 instruction

Hyperscan
(Software DPI)

Thanks

