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VNFs Will Run in Diverse Infrastructures 
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How can we unify these environments? 
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Virtual Network Function (VNF) Considerations 

© 2013-2015 RIFT.io, Inc. Confidential and Proprietary  

GW A VNF Breaks Down Into VNF Components (VNFc) 
– Control Plane / Data Plane / Security as example 
– VNF vendors likely to have diverse network attachment models 
– Any NFV architecture needs to accommodate a variety of guest attachment options 
– Each VNFC will need to scale independently and be able to run virtually anywhere 

 

Example 
VNF 

Bearer 

• Packet forwarding performance is 
the most critical metric 

• Limit complex interface bonding if 
possible for flow state consistency 

• Guest OS’s need access to data 
plane accelerated NICs (DPDK) 

• Target hosts with high bandwidth 
NICs (40G/100G) 
 

 

VNFc-1 
Security 

• Session encryption / decryption 
rate is the most critical metric 

• Scale-out of crypto tunnels 
across security subsystem key for 
deterministic scalability 

• Guest OS’s need access to crypto 
offload 

• Target hosts with PCI accelerated 
crypto processing (NPU/NSP) 

VNFc-3 
Control 

VNFc-2 

• Transactions per second is the most 
critical metric 

• VPN / NAT association and 
management 

• Many other in-line services likely to be 
offered 

• Responsible for coordinated scale-out 
of all VNFCs 

• Likely most utilized function – target 
low cost hosts 
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Variety of Network Attachment Options 
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Virtio 
– Para-virtualized network that’s the simplest to deploy 
– OpenStack native support 
– Tenant encapsulation supported by OpenStack 
– Lower performance due to many context switches (host / guest / 

QEMU) 
– Complex networking limited to host environment 

Direct Pass-Through 
– Direct guest access to NIC hardware 
– OpenStack does not natively support this  
– Tenant encapsulation outside of OpenStack - significant work to 

integrate 
– Very high performance due to direct guest access to the hardware 
– Complex networking left to the guest environment and underlay 

SR-IOV 
– High speed multi-guest NIC access 
– OpenStack native support 
– Tenant encapsulation outside of OpenStack - significant work to 

integrate 
– High performance due to direct hardware support 
– Complex networking left to the guest environment and underlay 

DPDK Accelerated vSwitch with Sockets / KNI 
– KNI provides the ability to use guest kernel NIC interfaces  
– Supported by Openstack 
– Low performance due to kernel interface 
– Complex networking limited to host environment 

DPDK Accelerated vSwitch with Ivshmem 
– Facilitates fast zero-copy data sharing among virtual machines  
– Supported by Openstack 
– Good performance but hugepage shared by all guests (unsecure) 
– Complex networking limited to host environment 

DPDK Accelerated vSwitch with Virtio 
– Virtio to DPDK in QEMU 
– Supported by Openstack 
– Limited performance due to packet copy 
– Complex networking limited to host environment 

DPDK Accelerated vSwitch with vhost-user 
– Facilitates fast zero-copy data sharing among virtual machines  
– Supported by Openstack 
– Limited performance due single queue limitation (multi-queue coming) 
– Complex networking limited to host environment 
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Network Attachment Option - Details 
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Hypervisor Bypass Standard vSwitch DPDK Accelerated vSwitch 
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Tap 
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IVSHM 
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Linux Sockets 
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Virtual Ethernet Port Virtual Ethernet Port Virtual Ethernet Port 

OVS Daemon 
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DPDK Accelerated OVS Forwarding Application 
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Guest OS / kernel space 
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Other Considerations Beyond Network Attachment Options 
CPU Pinning 

– A process or thread affinity configured with one or multiple cores 
– In a 1:1 pinning configuration between virtual CPUs and physical CPUs, some predictability is introduced into the system by preventing host and 

guest schedulers from moving workloads around facilitating other efficiencies such as improved cache hit rates 
Huge Pages 

– Provides up to 1-GB page table entry sizes to reduce I/O translation look-aside buffer (IOTLB) misses which improves networking performance, 
particularly for small packets 

I/O-Aware NUMA Scheduling 
– Memory allocation process that prioritizes the highest-performing memory local to a processor core 
– Able to configure VMs to use CPU cores from the same processor socket and choose the optimal socket based on the locality of the relevant NIC 

device that is providing the data connectivity for the VM 
Cache Monitoring Technology / Cache Allocation Technology (CMT/CAT) 
– CMT allows an operating system (OS) or hypervisor or virtual machine monitor (VMM) to determine the usage of cache by applications running 

on the platform 
– CMT allows an OS or VMM to assign an ID (RMID) for each of the applications or VMs that are scheduled to run on a core, monitor cache 

occupancy on a per-RMID basis, and read last level cache occupancy for a given RMID at any time 
– CAT allows an OS, hypervisor, or VMM to control allocation of a CPU’s shared last-level cache which lets the processor provide access to portions 

of the cache according to the established class of service (COS) 
• Configuring COS defines the amount of resources (cache space) available at the logical processor level and associates each logical processor 

with an available COS 
– CMT provides an application the ability to run on a logical processor that uses the desired COS 
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Workload Placement Implications 

Hosts with 
PCI Hardware 

Adapters 

Hosts with 
40G/100G NICs 

Hosts with 
TXT / TPM 

Hosts with 
NUMA 

Intelligent 
Workload 
Placement 
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Matching Workload Needs with Infrastructure Capabilities 
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Physical Switch (physnet2-sriov) 

VLAN A (data-sriov-net-a)  

VLAN B (data-sriov-net-b) 

Host A 

Guest A Guest B 

pNIC 
eth0 

pNIC 
eth1 

Compute Attributes 

vNIC 
e2 

vNIC 
e1 

Physical Switch (physnet1) 

VLAN A (control-net-a)  

VLAN B (control-net-b) 

 VDU Descriptor: 
– Image: <path> 
– Flavor: { vcpus: <count>, memory: <mb>, storage: <GB> } 
– Guest- EPA: { mempage-size: <large|small|prefer-large>,  

                        trusted-execution: <true|false>, 
                        cpu-pinning-policy: <dedicated|shared|any>,  
                        thread-pin-policy: <avoid|separate|isolated|any> , 
                         numa: { node-cnt: <count>,  
                                       mem-policy: <strict|preferred> , 
                                       nodes: { id: <id>, memory: <mb>,  
                                                      vcpu-list: <comma separated list> } } } 

– Host-EPA: { processor: { model: <model>,  
                                           features: <64b, iommu, cat, cmt, ddio, etc>  
} } 

– vSwitch-EPA: { ovs-acceleration: <true|false>, 
                           ovs-offload: <true|false> }  } 

– Hypervisor: { type:<kvm|xen> , version: <> } 
– Interface: 

• Name: <string> 
• Type: direct-sr-iov | normal | direct-pci-passthrough 
• NIC-EPA: { vlan-tag-stripping: <boolean>,  

                   ovs-offload: <boolean>, vendor-id: <vendor-id>, 
                   datapath-library: <name-of-library>, 
                   bandwidth: <bw> } 

• Network: <name-of-provider-network> 
 

Open vSwitch 
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VF-A VF-B 

Detailed CPU and network controls  
described in an open descriptor model! 
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The Need for Abstracted I/O 
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I/O Abstraction Layer 
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Packet I/O Toolkit (PIOT) 
• PIOT is based on DPDK EAL (Environment Abstraction Layer) 
• PIOT provides a Layer-2 Packet API, which allows applications to perform fastpath I/O through the physical and logical devices that it manages. The 

following types of devices are initially supported by PIOT: 
- User Mode I/O Ethernet (DPDK based) 
- Raw Socket Mode (attached to a Linux kernel-managed Ethernet port) 
- Ring Mode (user-space loopback device) 
- PCAP-based player/recorder 
- PIOT supports KNI (Kernel NIC Interface) for all of the devices list above   

PIOT 
DPDK DPDK DPDK DPDK 

SR-IOV Driver VirtIO Driver Ivshm Driver KNI Driver 

Creating a Packet I/O Toolkit Leveraging DPDK 
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Device Open - This API is used for opening a 
PIOT-managed device for I/O 
• Input parameters: 

- Device name 
- Number of device Tx queues requested 
- Number of device Rx queues requested 
- Device event callback (link up, link 

down, etc.) 
- Initial device configuration requested: 
- Promiscuous mode 
- Multicast 

• Output: 
- Handle for the opened device, with the 

following information: 
- Number of Tx queues allocated 
- Number of Rx queues allocated 
- NUMA socket affinity 
- Interrupt event poll info: 
- Event poll function pointer 
- Event poll file descriptor (of /dev/uioN 

device) 

Device Close  - This API is used to close the 
PIOT connection for the device specified by 
the input handle. 
• Input parameters: 

- Device handle 
• Output: 

- Success/failure status 

Burst Receive - This API polls the specified receive 
queue of the device for packets and, if they are 
available, reads and returns the packets in bulk. 
The caller can specify the maximum number of 
packets that can be read. 
• Input parameters: 

- Device handle 
- Receive queue ID 
- Maximum number of packets to be read 

• Output: 
- Number of packets received 
- Packets received 

Burst Transmit - This API polls the specified receive 
queue of the device for packets and, if they are 
available, reads and returns the packets in bulk. 
The caller can specify the maximum number of 
packets that can be read. 
• Input parameters: 

- Device handle 
- Transmit queue ID 
- Number of packets to be transmitted 
- Packets to be transmitted 

• Output: 
- Number of packets transmitted 

Device Start - This API call is used for device-
specific start operation. 
• Input parameters: 

- Device handle 
• Output: 

- Success/failure status 
 

Device Tx Queue Setup - This API call is used 
to set up the specified transmit queue of the 
device. 
• Input parameters: 

- Device handle: 
- Queue ID 
- Number of Tx descriptors 
- Memory pool for Tx buffer allocation 

• Output: 
- Success/failure status 

Device Stop - This API call is used for device-
specific start operation. 
• Input parameters: 

- Device handle 
• Output: 

- Success/failure status 
 

Device Unpairing - This API call is used to 
unpair paired devices. It is important to note 
that paired devices must be unpaired before 
either one can be closed. 
• Input parameters: 

- Device 1 handle 
- Device 2 handle 

• Output: 
- Status 

Device Pairing - This operation is applicable 
only for certain types of devices. Initially, this 
will be implemented only for Ring Mode 
devices. Its purpose is to pair two specified 
logical devices. It works by connecting the 
receive of one device to the transmit of the 
other device, and vice-versa, creating a loop 
back between them. 
• Input parameters: 

- Device 1 handle 
- Device 2 handle 

• Output: 
- Status 

Device Statistics Fetch - This API call is used 
to fetch input and output statistics for the 
device. 
• Input parameters: 

- Device handle 
• Output: 

- Device statistics 
- Number of received packets 
- Number of received bytes 
- Number of transmitted packets 
- Number of transmitted bytes 
- Number of receive errors 
- Number of transmit errors 
- Number of multicast packets received 

Device Information Fetch - This API function 
is used to fetch device status and device-
specific information. 
• Input parameters: 

- Device handle 
• Output: 

- Device information: 
- Device driver name 
- Max Rx queues 
- Max Tx queues 
- Max MAC address 
- PCI ID and address 
- NUMA node 

Device Rx Queue Setup - This API call is used 
to set up the specified receive queue of the 
device. 
• Input parameters: 

- Device handle 
- Queue ID 
- Number of Rx descriptors 
- Memory pool for Rx buffer allocation 

• Output: 
- Success/failure status 
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An Example Use Case of a DPDK Packet I/O Toolkit Performance 
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Non-DPDK Enabled Network Service (Fleet) 

– Traffic generator VNF  Virtual Load Balancer VNF  Traffic Sink/Reflector VNF 

– Intel Niantic NICs in Wildcat Pass servers running over Cisco Nexus 3K switches 

– Virtio connection to OVS with out DPDK on all hosts 

DPDK Enabled Network Service (Fleet) 
– Traffic generator VNF  Virtual Load Balancer VNF  Traffic Sink/Reflector VNF 
– Intel Niantic NICs in Wildcat Pass servers running over Cisco Nexus 3K switches 
– DPDK Enabled OVS using virtio driver on all hosts 

5x Performance 
Gain 
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Summary Slide 

• Virtual Network Functions (VNFs) are diverse and will have many 
different network connectivity requirements 
– PCI Pass-Through / SR-IOV / KNI / ivshmem / virt-io / vhost-user 

• Network connectivity options, in combination with other 
enhancement choices, have a dramatic effect on performance 
– NUMA, CPU Pinning, Huge Pages, CAT/CMT, QAT 

• Leveraging DPDK to build a network abstraction layer (Packet I/O 
Toolkit) provides simplified VNF networking 
– Write once, deploy anywhere 

© 2013-2015 RIFT.io, Inc. Confidential and Proprietary  
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