
Leveraging DPDK to Scale-Out Network
Functions Without Sacrificing Networking
Performance

© 2013-2015 RIFT.io, Inc. Confidential and Proprietary

August 2015

2

VNFs Will Run in Diverse Infrastructures

© 2013-2015 RIFT.io, Inc. Confidential and Proprietary

How can we unify these environments?

Hypervisor

Host

Switch

Bare Metal

NIB

Hypervisor

Host

Hypervisor

Host

Switch

Private Clouds

Switch

Hypervisor

Host

Public Clouds

NIB

3

Virtual Network Function (VNF) Considerations

© 2013-2015 RIFT.io, Inc. Confidential and Proprietary

GW A VNF Breaks Down Into VNF Components (VNFc)
– Control Plane / Data Plane / Security as example
– VNF vendors likely to have diverse network attachment models
– Any NFV architecture needs to accommodate a variety of guest attachment options
– Each VNFC will need to scale independently and be able to run virtually anywhere

Example
VNF

Bearer

• Packet forwarding performance is
the most critical metric

• Limit complex interface bonding if
possible for flow state consistency

• Guest OS’s need access to data
plane accelerated NICs (DPDK)

• Target hosts with high bandwidth
NICs (40G/100G)

VNFc-1
Security

• Session encryption / decryption
rate is the most critical metric

• Scale-out of crypto tunnels
across security subsystem key for
deterministic scalability

• Guest OS’s need access to crypto
offload

• Target hosts with PCI accelerated
crypto processing (NPU/NSP)

VNFc-3
Control

VNFc-2

• Transactions per second is the most
critical metric

• VPN / NAT association and
management

• Many other in-line services likely to be
offered

• Responsible for coordinated scale-out
of all VNFCs

• Likely most utilized function – target
low cost hosts

4

Variety of Network Attachment Options

© 2013-2015 RIFT.io, Inc. Confidential and Proprietary

Virtio
– Para-virtualized network that’s the simplest to deploy
– OpenStack native support
– Tenant encapsulation supported by OpenStack
– Lower performance due to many context switches (host / guest /

QEMU)
– Complex networking limited to host environment

Direct Pass-Through
– Direct guest access to NIC hardware
– OpenStack does not natively support this
– Tenant encapsulation outside of OpenStack - significant work to

integrate
– Very high performance due to direct guest access to the hardware
– Complex networking left to the guest environment and underlay

SR-IOV
– High speed multi-guest NIC access
– OpenStack native support
– Tenant encapsulation outside of OpenStack - significant work to

integrate
– High performance due to direct hardware support
– Complex networking left to the guest environment and underlay

DPDK Accelerated vSwitch with Sockets / KNI
– KNI provides the ability to use guest kernel NIC interfaces
– Supported by Openstack
– Low performance due to kernel interface
– Complex networking limited to host environment

DPDK Accelerated vSwitch with Ivshmem
– Facilitates fast zero-copy data sharing among virtual machines
– Supported by Openstack
– Good performance but hugepage shared by all guests (unsecure)
– Complex networking limited to host environment

DPDK Accelerated vSwitch with Virtio
– Virtio to DPDK in QEMU
– Supported by Openstack
– Limited performance due to packet copy
– Complex networking limited to host environment

DPDK Accelerated vSwitch with vhost-user
– Facilitates fast zero-copy data sharing among virtual machines
– Supported by Openstack
– Limited performance due single queue limitation (multi-queue coming)
– Complex networking limited to host environment

5

Network Attachment Option - Details

© 2013-2015 RIFT.io, Inc. Confidential and Proprietary

Hypervisor Bypass Standard vSwitch DPDK Accelerated vSwitch

Host
Host OS / kernel space

Host OS / user space

QEMU

Direct Pass-through

KVM

Guest VM

Guest OS / kernel space

Guest OS / user space

PF Driver

QEMU

KVM

Guest VM

Guest OS / kernel space

Guest OS / user space

PF Driver

pNIC
Intel VT-d

Host
Host OS / kernel space

virtIO

Host OS / user space

KVM

Guest VM

Guest OS / kernel space

Guest OS / user space

VirtIO Driver

OVS

Tap

Ethernet

QEMU

Host

Host OS / user space

Host OS / kernel space

QEMU
IVSHM

Guest VM

Guest OS / kernel space
IVSHM

Guest OS / user space

Linux Sockets

BAR2

DPDK KNI

QEMU
IVSHM

Guest VM

Guest OS / kernel space
IVSHM

Guest OS / user space

DPDK

BAR2

Guest VM

Guest OS / kernel space

Guest OS / user space

VirtIO

DPDK PMD Drivers

Ethernet
Port

Ethernet
Port

Packet Forwarding

Virtual Ethernet Port Virtual Ethernet Port Virtual Ethernet Port

OVS Daemon

DPDK Control
Interface

DPDK Accelerated OVS Forwarding Application

virtIO ivshmem KNI

KNI BUF

QEMU

VirtIO
DPDK

Host
Host OS / kernel space

Host OS / user space

DPDK SR-IOV

Guest VM

Guest OS / kernel space

Guest OS / user space

QEMU

KVM

Guest VM

Guest OS / kernel space

Guest OS / user space

DPDK DPDK

VF Driver VF Driver

Guest VM

Guest OS / kernel space

Guest OS / user space

VirtIO

vhost-user

QEMU

VirtIO
DPDK

Virtual Ethernet Port

pNIC
SR-IOV

Physical Function

Virtual Ethernet Bridge and Classifier

PC
I M

an
ag

er
 Virtual Function Virtual Function

6

Other Considerations Beyond Network Attachment Options
CPU Pinning

– A process or thread affinity configured with one or multiple cores
– In a 1:1 pinning configuration between virtual CPUs and physical CPUs, some predictability is introduced into the system by preventing host and

guest schedulers from moving workloads around facilitating other efficiencies such as improved cache hit rates
Huge Pages

– Provides up to 1-GB page table entry sizes to reduce I/O translation look-aside buffer (IOTLB) misses which improves networking performance,
particularly for small packets

I/O-Aware NUMA Scheduling
– Memory allocation process that prioritizes the highest-performing memory local to a processor core
– Able to configure VMs to use CPU cores from the same processor socket and choose the optimal socket based on the locality of the relevant NIC

device that is providing the data connectivity for the VM
Cache Monitoring Technology / Cache Allocation Technology (CMT/CAT)
– CMT allows an operating system (OS) or hypervisor or virtual machine monitor (VMM) to determine the usage of cache by applications running

on the platform
– CMT allows an OS or VMM to assign an ID (RMID) for each of the applications or VMs that are scheduled to run on a core, monitor cache

occupancy on a per-RMID basis, and read last level cache occupancy for a given RMID at any time
– CAT allows an OS, hypervisor, or VMM to control allocation of a CPU’s shared last-level cache which lets the processor provide access to portions

of the cache according to the established class of service (COS)
• Configuring COS defines the amount of resources (cache space) available at the logical processor level and associates each logical processor

with an available COS
– CMT provides an application the ability to run on a logical processor that uses the desired COS

© 2013-2015 RIFT.io, Inc. Confidential and Proprietary

7

Workload Placement Implications

Hosts with
PCI Hardware

Adapters

Hosts with
40G/100G NICs

Hosts with
TXT / TPM

Hosts with
NUMA

Intelligent
Workload
Placement

© 2013-2015 RIFT.io, Inc. Confidential and Proprietary

8

Matching Workload Needs with Infrastructure Capabilities

© 2013-2015 RIFT.io, Inc. Confidential and Proprietary

Physical Switch (physnet2-sriov)

VLAN A (data-sriov-net-a)

VLAN B (data-sriov-net-b)

Host A

Guest A Guest B

pNIC
eth0

pNIC
eth1

Compute Attributes

vNIC
e2

vNIC
e1

Physical Switch (physnet1)

VLAN A (control-net-a)

VLAN B (control-net-b)

 VDU Descriptor:
– Image: <path>
– Flavor: { vcpus: <count>, memory: <mb>, storage: <GB> }
– Guest- EPA: { mempage-size: <large|small|prefer-large>,

 trusted-execution: <true|false>,
 cpu-pinning-policy: <dedicated|shared|any>,
 thread-pin-policy: <avoid|separate|isolated|any> ,
 numa: { node-cnt: <count>,
 mem-policy: <strict|preferred> ,
 nodes: { id: <id>, memory: <mb>,
 vcpu-list: <comma separated list> } } }

– Host-EPA: { processor: { model: <model>,
 features: <64b, iommu, cat, cmt, ddio, etc>
} }

– vSwitch-EPA: { ovs-acceleration: <true|false>,
 ovs-offload: <true|false> } }

– Hypervisor: { type:<kvm|xen> , version: <> }
– Interface:

• Name: <string>
• Type: direct-sr-iov | normal | direct-pci-passthrough
• NIC-EPA: { vlan-tag-stripping: <boolean>,

 ovs-offload: <boolean>, vendor-id: <vendor-id>,
 datapath-library: <name-of-library>,
 bandwidth: <bw> }

• Network: <name-of-provider-network>

Open vSwitch

Ho
st

 A
tt

rib
ut

es

VF-A VF-B

Detailed CPU and network controls
described in an open descriptor model!

9

The Need for Abstracted I/O

© 2013-2015 RIFT.io, Inc. Confidential and Proprietary

I/O Abstraction Layer

DPDK PMD Drivers

Ethernet
Port

Ethernet
Port

Packet Forwarding

Virtual Ethernet Port Virtual Ethernet Port Virtual Ethernet Port

OVS Daemon

DPDK Control Interface

DPDK Accelerated OVS Forwarding Application

Virtual Ethernet Port

DPDK DPDK DPDK DPDK

GW

Guest VM

Guest - kernel space

Guest - user space

DPDK

VF Driver

Guest VM

Guest - kernel space

Guest - user space

DPDK

VF Driver

SR-IOV

SR-IOV Driver SR-IOV Driver

Application Application

Gi-LAN

Guest VM

Guest - kernel space

Guest - user space

VirtIO Driver

Guest VM

Guest - kernel space

Guest - user space

VirtIO Driver

vhost-user

VirtIO Driver VirtIO Driver

Application Application

NAT

ivshmem

Guest VM

Guest - kernel space

IVSHM

Guest - user space

DPDK

BAR2

Ivshm Driver

Application

FW

KNI

Guest VM

Guest - kernel space

IVSHM

Guest - user space

Linux Sockets

BAR2

DPDK KNI

KNI Driver

Application

Packet I/O
Tool Kit

API

Packet I/O
Tool Kit

API
Packet I/O

Tool Kit
API

Packet I/O
Tool Kit

API

Packet I/O
Tool Kit

API

Packet I/O
Tool Kit

API

10

Packet I/O Toolkit (PIOT)
• PIOT is based on DPDK EAL (Environment Abstraction Layer)
• PIOT provides a Layer-2 Packet API, which allows applications to perform fastpath I/O through the physical and logical devices that it manages. The

following types of devices are initially supported by PIOT:
- User Mode I/O Ethernet (DPDK based)
- Raw Socket Mode (attached to a Linux kernel-managed Ethernet port)
- Ring Mode (user-space loopback device)
- PCAP-based player/recorder
- PIOT supports KNI (Kernel NIC Interface) for all of the devices list above

PIOT
DPDK DPDK DPDK DPDK

SR-IOV Driver VirtIO Driver Ivshm Driver KNI Driver

Creating a Packet I/O Toolkit Leveraging DPDK

© 2013-2015 RIFT.io, Inc. Confidential and Proprietary

Device Open - This API is used for opening a
PIOT-managed device for I/O
• Input parameters:

- Device name
- Number of device Tx queues requested
- Number of device Rx queues requested
- Device event callback (link up, link

down, etc.)
- Initial device configuration requested:
- Promiscuous mode
- Multicast

• Output:
- Handle for the opened device, with the

following information:
- Number of Tx queues allocated
- Number of Rx queues allocated
- NUMA socket affinity
- Interrupt event poll info:
- Event poll function pointer
- Event poll file descriptor (of /dev/uioN

device)

Device Close - This API is used to close the
PIOT connection for the device specified by
the input handle.
• Input parameters:

- Device handle
• Output:

- Success/failure status

Burst Receive - This API polls the specified receive
queue of the device for packets and, if they are
available, reads and returns the packets in bulk.
The caller can specify the maximum number of
packets that can be read.
• Input parameters:

- Device handle
- Receive queue ID
- Maximum number of packets to be read

• Output:
- Number of packets received
- Packets received

Burst Transmit - This API polls the specified receive
queue of the device for packets and, if they are
available, reads and returns the packets in bulk.
The caller can specify the maximum number of
packets that can be read.
• Input parameters:

- Device handle
- Transmit queue ID
- Number of packets to be transmitted
- Packets to be transmitted

• Output:
- Number of packets transmitted

Device Start - This API call is used for device-
specific start operation.
• Input parameters:

- Device handle
• Output:

- Success/failure status

Device Tx Queue Setup - This API call is used
to set up the specified transmit queue of the
device.
• Input parameters:

- Device handle:
- Queue ID
- Number of Tx descriptors
- Memory pool for Tx buffer allocation

• Output:
- Success/failure status

Device Stop - This API call is used for device-
specific start operation.
• Input parameters:

- Device handle
• Output:

- Success/failure status

Device Unpairing - This API call is used to
unpair paired devices. It is important to note
that paired devices must be unpaired before
either one can be closed.
• Input parameters:

- Device 1 handle
- Device 2 handle

• Output:
- Status

Device Pairing - This operation is applicable
only for certain types of devices. Initially, this
will be implemented only for Ring Mode
devices. Its purpose is to pair two specified
logical devices. It works by connecting the
receive of one device to the transmit of the
other device, and vice-versa, creating a loop
back between them.
• Input parameters:

- Device 1 handle
- Device 2 handle

• Output:
- Status

Device Statistics Fetch - This API call is used
to fetch input and output statistics for the
device.
• Input parameters:

- Device handle
• Output:

- Device statistics
- Number of received packets
- Number of received bytes
- Number of transmitted packets
- Number of transmitted bytes
- Number of receive errors
- Number of transmit errors
- Number of multicast packets received

Device Information Fetch - This API function
is used to fetch device status and device-
specific information.
• Input parameters:

- Device handle
• Output:

- Device information:
- Device driver name
- Max Rx queues
- Max Tx queues
- Max MAC address
- PCI ID and address
- NUMA node

Device Rx Queue Setup - This API call is used
to set up the specified receive queue of the
device.
• Input parameters:

- Device handle
- Queue ID
- Number of Rx descriptors
- Memory pool for Rx buffer allocation

• Output:
- Success/failure status

11

An Example Use Case of a DPDK Packet I/O Toolkit Performance

© 2013-2015 RIFT.io, Inc. Confidential and Proprietary

Non-DPDK Enabled Network Service (Fleet)

– Traffic generator VNF  Virtual Load Balancer VNF  Traffic Sink/Reflector VNF

– Intel Niantic NICs in Wildcat Pass servers running over Cisco Nexus 3K switches

– Virtio connection to OVS with out DPDK on all hosts

DPDK Enabled Network Service (Fleet)
– Traffic generator VNF  Virtual Load Balancer VNF  Traffic Sink/Reflector VNF
– Intel Niantic NICs in Wildcat Pass servers running over Cisco Nexus 3K switches
– DPDK Enabled OVS using virtio driver on all hosts

5x Performance
Gain

12

Summary Slide

• Virtual Network Functions (VNFs) are diverse and will have many
different network connectivity requirements
– PCI Pass-Through / SR-IOV / KNI / ivshmem / virt-io / vhost-user

• Network connectivity options, in combination with other
enhancement choices, have a dramatic effect on performance
– NUMA, CPU Pinning, Huge Pages, CAT/CMT, QAT

• Leveraging DPDK to build a network abstraction layer (Packet I/O
Toolkit) provides simplified VNF networking
– Write once, deploy anywhere

© 2013-2015 RIFT.io, Inc. Confidential and Proprietary

The information and descriptions contained herein embody confidential and proprietary information that is the property of RIFT.io, Inc. Such information and descriptions may not be copied, reproduced, disclosed to others, published or used, in whole or in part, for any
purpose other than that for which it is being made available without the express prior written permission of RIFT.io, Inc.

Nothing contained herein shall be considered a commitment by RIFT.io to develop or deliver such functionality at any time. RIFT.io reserves the right to change, modify, or delete any item(s) at any time for any reason.

Thank You

© 2013-2015 RIFT.io, Inc. Confidential and Proprietary

	Leveraging DPDK to Scale-Out Network Functions Without Sacrificing Networking Performance
	VNFs Will Run in Diverse Infrastructures
	Virtual Network Function (VNF) Considerations
	Variety of Network Attachment Options
	Network Attachment Option - Details
	Other Considerations Beyond Network Attachment Options
	Workload Placement Implications
	Matching Workload Needs with Infrastructure Capabilities
	The Need for Abstracted I/O
	Creating a Packet I/O Toolkit Leveraging DPDK
	An Example Use Case of a DPDK Packet I/O Toolkit Performance
	Summary Slide
	Thank You

