
Future Enhancements to DPDK
Framework
Keith Wiles, Principal Engineer, Intel Corporation

Classify

QoS

Core
Libraries Platform

Preserving Application Investment with DPDK
• Open-source (BSD license) community project (5+ years,

version 2.1 latest) -- http://dpdk.org/
‒ All code is Open Source including the device drivers or PMDs (Poll Mode

Drivers)
‒ Optimized Linux User Space Library focused on data plane

implementation on general purpose processors
‒ Has been Very stable project with ABI versioning for APIs
‒ Multi-architecture: x86, IBM, Freescale, EZChip(Tilera) support

• Encompasses legacy platforms and newer acceleration
platforms

• DPDK has a large application install base and included in
Linux Distro’s CentOS, Ubuntu, Red Hat, …(Fedora)
‒ Adopted by standard OS distributions (FreeBSD, Linux) and many platform

frameworks including VirtIO/Vhost and OpenvSwitch

• Scalable solution to meet different NFV use cases
• Hardware acceleration complemented by software

implementations for consistent set of services to applications
• Supports a large number of features like lockless rings, hash

keys, ACL, Crypto, Match Action, buffer management and
many others

• Has a large number of example applications and growing
• Supports any number of devices at the same time, using a 2

layer device model

Packet Access
(PMD – Native & Virtual)

EAL

MALLOC

MBUF

MEMPOOL

RING

TIMER

KNI

POWER

IVSHMEM

LPM

EXACT
MATCH

ACL

E1000

IXGBE

VMXNET3

IGB

I40e

VIRTIO

ETHDEV

XENVIRT

PCAP

RING

METER

SCHED

Linux User Space Application

User Space

KNI IGB_UIO VF_IO

2

http://dpdk.org/

Data Plane Development Kit Architecture

* Other names and brands may be claimed as the property of others.

Linux Kernel

User Space

KNI IGB_UIO

EAL

MALLOC

MBUF

MEMPOOL

RING

TIMER

Core Libraries

KNI

POWER

IVSHMEM

Other/Misc

rte_hash librte_acl E1000, IGB

IXGBE

VMXNET3

VIRTIO

ETHDEV Packet I/O

XENVIRT

PCAP

Mellanox*

Cisco VIC*

Broadcom*

i40e

FM10K

Chelsio*

Exact
Match API

Flow
Director

ACL API Load
Balance

rte_distrib

RSS

Flow
Director

RRC HW
acceleration

QoS API

rte_meter

rte_sched

Island
Cove

Crypto API

SW crypto

QAT
crypto

Common Function APIs

Drivers

FRMWORK
Inline

IA-64-32 PowerPPC MIPS ARM

Arch Ports

CMDLINE

JOBSTAT

PIPELINE

BONDING OTHER
PMDs

KVARGS

Presenter
Presentation Notes
DPDK – Multiple archs

4

DPDK - AE
What is Acceleration Enhancements for DPDK?

5

DPDK – What does the Future Hold?
Here are a few items we are thinking about and need help
• DPDK-AE (Acceleration Enhancements)
• What type of acceleration device types?

• Crypto via hardware and software acceleration
• DPI engine
• Compression
• Match Action and Flow Director APIs

• Adding support for SoC hardware
• hardware memory management and event handling

• Network Stacks, light weight threading and other applications
• Focus on VirtIO performance and enhancements
• Support other language bindings

6

DPDK – crypto API
Overview of proposed Crypto API for DPDK

7

DPDK – Crypto using Hardware and Software
Doing hardware and/or software crypto has some good advantages

• Hardware crypto can handle the large packets
• Software crypto can handle the smaller packets

Added advantages are:
• better performance over a range of packet sizes
• parallel execution with software and hardware crypto
• Abstracts the packet handling making it transparent to the application

Crypto Device Configuration (RFC)
uint8_t dev_id; /* Crypto Device identifier */

/* Crypto Device Configuration */
struct rte_cryptodev_config dev_conf = {
 .socket_id = SOCKET_ID_ANY,
 .nb_queue_pairs = RTE_CRYPTODEV_DEFAULT_NB_QUEUE_PAIRS,
 .session_mp = {
 .nb_objs = RTE_CRYPTODEV_DEFAULT_NB_SESSIONS,
 .cache_size = RTE_CRYPTODEV_DEFAULT_CACHE_SIZE
 }
};

/* Configure device */
rte_cryptodev_configure(dev_id, &dev_config);

/* Crypto Device Queue Pair Configuration */
struct rte_cryptodev_qp_conf qp_conf = {
 .nb_descriptors = RTE_CRYPTODEV_DEFAULT_NB_DECS_PER_QUEUE_PAIR
}

/* Configure device queue pairs */
uint16_t qp_id;
for (qp_id = 0; qp_id < RTE_CRYPTODEV_DEFAULT_NB_QUEUE_PAIRS; qp_id++) {
 rte_cryptodev_queue_pair_setup(dev_id, qp_id, &qp_conf, rte_cryptodev_socket_id(dev_id)));
}

Presenter
Presentation Notes
DPDK

Crypto Session Management (RFC)
uint8_t aes128_cbc_key[CIPHER_KEY_LENGTH_AES128_CBC] = { … }; /* AES128 cipher key */
uint8_t hmac_sha256_key[HMAC_KEY_LENGTH_SHA256] = { … }; /* HMAC SHA256 authentication key */

/* Cipher Parameters */
struct rte_crypto_cipher_params cipher_params = {
 .algo = RTE_CRYPTO_SYM_CIPHER_AES_CBC,
 .op = RTE_CRYPTO_SYM_CIPHER_OP_ENCRYPT,
 .key = {
 .data = aes128_cbc_key,
 .length = CIPHER_KEY_LENGTH_AES128_CBC
 }
}

/* Authentication Parameters */
struct rte_crypto_hash_params hash_params = {
 .op = RTE_CRYPTO_SYM_HASH_OP_DIGEST_GENERATE,
 .algo = RTE_CRYPTO_SYM_HASH_SHA256_HMAC,
 .auth_key = {
 .data = hmac_sha256_key,
 .length = HMAC_KEY_LENGTH_SHA256
 },
 .digest_length = DIGEST_BYTE_LENGTH_SHA256
}

/* Session Creation */
struct rte_cryptodev_session *crypto_session = rte_cryptodev_session_create(dev_id,
 &cipher_params, &hash_params, RTE_CRYPTO_SYM_OPCHAIN_CIPHER_HASH);

Presenter
Presentation Notes
DPDK

Crypto Operation (RFC)
struct rte_mbuf *m;

/* Create a crypto op mempool */
struct rte_mempool *crypto_op_pool = rte_crypto_op_pool_create(“crypto_op_mempool",
 NB_CRYPTO_OPS, CRYPTO_OP_CACHE_SIZE, rte_socket_id());
/* Generate Crypto op data structure */
struct rte_crypto_op_data *crypto_op = rte_crypto_op_alloc(crypto_op_pool);

/* Set crypto operation data parameters, in this example, we are appending the generated digest to the
end of the mbuf data buffer and prepending the IV to the start of mbuf data buffer, these parameter do
not need to be within the mbuf */
rte_crypto_op_attach_session(crypto_op, crypto_session);

crypto_op->digest.data = (uint8_t *)rte_pktmbuf_append(m, DIGEST_BYTE_LENGTH_SHA224);
crypto_op->digest.length = DIGEST_BYTE_LENGTH_SHA224;

crypto_op->iv.data = (uint8_t *)rte_pktmbuf_prepend(m, CIPHER_IV_LENGTH_AES128_CBC);
crypto_op->iv.length = CIPHER_IV_LENGTH_AES_CBC;

crypto_op->data.to_cipher.offset = CIPHER_IV_LENGTH_AES_CBC;
crypto_op->data.to_cipher.length = DATA_LENGTH;

crypto_op->data.to_hash.offset = CIPHER_IV_LENGTH_AES_CBC;
crypto_op->data.to_hash.length = DATA_LENGTH;

/* Attach the completed crypto op data structure to the mbuf */
rte_pktmbuf_attach_crypto_op(m, crypto_op);

Presenter
Presentation Notes
DPDK

Crypto Packet Processing (RFC)
uint8_t dev_id; /* Crypto device identifier */

uint16_t qp_id; /* Queue pair identifier */

struct rte_mbuf *pkts[] = { m, … }; /* Array of mbufs for crypto processing */

unsigned nb_pkts = sizeof(pkts)/sizeof(*pkts); /* Number of valid mbufs in pkts array */

/* Enqueue mbufs for crypto processing on the specified crypto device queue */

unsigned pkts_enqueued = rte_cryptodev_enqueue_burst(dev_id, qp_id, pkts, nb_pkts);

/* Create an array of mbuf pointers to receive processed packets */

struct rte_mbuf *ppkts[MAX_BURST_SIZE];

/* Dequeue all available processed mbufs up to MAX_BURST_SIZE on the specified crypto device queue */

unsigned pkts_dequeued = rte_cryptodev_dequeue_burst(dev_id, qp_id, ppkts, MAX_BURST_SIZE);

Presenter
Presentation Notes
DPDK

12

DPDK – Flow classification
Proposed flow classification support in DPDK

13

DPDK – Flow Classification with Hardware
DPDK uses Flow Director APIs to manage flows

Match-Action API is a superset of APIs for flow classification
• The code is open source at https://github.com/match-interface

Match-Action API has a much large set of APIs to handle more flow
classification needs, which we need to expose in the future

The Match-Action API is used under the Flow Director API for backward
compatibility with current applications, while extending the applications
to new hardware or software designs

https://github.com/match-interface
https://github.com/match-interface
https://github.com/match-interface

14

DPDK – Flow Classification with Hardware
DPDK uses Flow Director APIs to manage flows

The flows are currently managed in NIC devices, but we can extend FDIR
APIs to support other hardware devices using Match-Action

Later we can continue to extend FDIR API to allow for more complex
configurations and hardware designs using the full set of APIs with
Match-Action APIs

15

DPDK – SoC support
Proposed suggestion to add SoC support to DPDK

DPDK-AE (DPDK- Acceleration Enhancements)

DPDK – Architecture
Focus to Date DPDK-AE (Acceleration Enhancements)

DPDK API

Crypto
Device

DPI
Device

Match-Action
Device

Future
Device

AES-NI

QAT

Hyperscan RRC

SoCs*

* We can adapt the SoC SDK via a DPDK PMD to maintain the highest performance

SoC
PMD

external
memory
manager

Network Stacks Storage and file
systems

Pktgen
Traffic generator

Open vSwitch
(OVS)

Light weight
threads

Future
features

Event based
program model

EAL

MALLOC

MBUF

MEMPOOL

RING

TIMER

Core
Libraries

KNI

POWER

IVSHMEM

Platform

LPM

Classificatio
n

ACL

Classify

e1000

ixgbe

bonding

af_pkt

i40e

fm10k

Packet Access (PMD)

ETHDEV

xenvirt

enic

ring

METER

SCHED

QoS

cxgbe

vmxnet3 virtio
3rd Party

3rd Party

PIPELINE

mlx4 memnic

others

HASH

Utilities

IP Frag

CMDLINE
JOBSTAT

KVARGS

REORDER

TABLE 3rd Party

NBT

Simple SOC model

1
6

Example
Applications

VNF
Applications

Presenter
Presentation Notes
DPDK

DPDK Extending Accelerators via SoC hardware

DPDK – Architecture

DPDK-AE (Acceleration Enhancements)

DPDK – API

Software

Hardware

SoC SDK

SoC
PMD

external
memory
manager 3rd Party

VNF Application

Crypto
Device

Simple model for SOC
integration

Ethernet
Device

SoC PMD: Poll Mode driver model for SoC devices
Provides a clean integration of SoC via a PMD in DPDK

• Hardware abstraction in DPDK is at the PMD layer
• DPDK-API: A generic API extended to support SoCs

– DPDK provides a two layer device model to support many
devices at the same time/binary, which can include SoC
devices

– Need to enhance DPDK with some SoC specific needs or
features to support SoC hardware

• Non-PCI configuration
• External memory manager(s) (for hardware based memory)
• Event based programming model

• SoC-PMD: Poll Mode Driver model for SoC
– Allows SoC SDK’s to remain private

• Supports ARM and MIPS DPDK ports to utilize these
SoC designs

Supports
other device

types

18

DPDK – Changes to Support SoC hardware
Enabling SoC hardware in DPDK requires a few enhancements

• Need a way to configure these non-PCIe devices
• Add support to DPDK mempool’s to allow for external or hardware memory

managers
• Add support for event based applications

• e.g. Open Event Machine or others to utilize an event based programming model

Enlisting input for other enhancements to DPDK for SoC devices

19

DPDK – Network Stack
We need a stack the only question is how many?

Presenter
Presentation Notes
DPDK

20

DPDK – Network Stacks and others
DPDK needs to add network stack support for applications
• One network stack will not fill everyone’s needs today
• DPDK needs a clean API for multiple network stacks

Some examples for network stack types
• Network stack with very high performance with UDP and TCP
• Low latency network protocol support for High Frequency Trading
• IPv6 support and SCTP are a few protocols needed
• Light weight threading model for more then one thread per core to manage

applications built using a multi-threaded design

What else needs to be supported?

Presenter
Presentation Notes
DPDK

21

DPDK – Network Stack(s)
•Need a standalone Socket solution

• For linked and non-linked applications
• Need to support native applications using LD_PRELOAD

• Integration with the host platform network stack
• Does the design appear as one stack or multiple stacks?
• Need to support integration with the host stack

• Netlink messages can be used to update the DPDK stack
• Synchronize all stacks for routing and application data

• Must be able to route packets to the local host stack from the
accelerated stacks
• Exception path or normal traffic like management

Presenter
Presentation Notes
DPDK

22

DPDK – Network Stack(s)
How can we build these network stack?

• FreeBSD based stacks allow for up to date protocols
• Purpose built stacks are also needed for a given use case
• High performance and/or low latency stack are needed

•One option is to maintain up to date protocols/stacks
• We can pull FreeBSD code from FreeBSD on demand then apply

patches to allow us to build FreeBSD in DPDK style
• Support as much of the protocols in FreeBSD as possible should

be a goal IMO
• Support File systems types using DPDK as a fast disk device

Presenter
Presentation Notes
DPDK

23

DPDK – VirtIO
Improve performance and enhancements

Presenter
Presentation Notes
DPDK

24

DPDK – VirtIO
•Virtio is one of the primary interfaces for VM Host

• Needs to be enhanced to support more devices
• Need to enhance performance of VirtIO

•SR-IOV is good for some cases in a VM
• But does not scale to many VMs or containers
• Very good in the host users pace to gain direct access to the

devices
•Not all devices support SR-IOV and VirtIO is the only
solution we have today as a standard

Presenter
Presentation Notes
DPDK

25

DPDK – Language bindings
Adding other language bindings

Presenter
Presentation Notes
DPDK

26

DPDK – language suggestions
DPDK needs other language bindings other than ‘C’

• Go from Google : golang.org
• Go concurrency mechanisms make it easy to write programs and get the most out of

multicore machines
• Swift will become Open Source later this year

• Swift is easy to program and has some nice performance
• Java is also another good language

• These language bindings can add cleaner application development
• Adding object oriented language designs
• Give better support for multicore programming for the developer
• Cleaner and faster development

• These compiled languages could provide very good performance with
some trade offs

Presenter
Presentation Notes
DPDK

27

DPDK – Scripting Languages
Interpreted languages like Lua (lua.org) or Python are
reasonable for configuration

• Lua is very simple to support DPDK bindings to the language
• Python is object oriented, but harder/bigger to integrate

Using a scripting language can enhance configuration and
writing applications like network protocol testers where
performance is not the main requirement

What other language bindings would be reasonable?

Presenter
Presentation Notes
DPDK

28

DPDK – Summary
• We need to add more acceleration supported hardware

• Review and comment on the Crypto RFC
• Lets contribute other architecture types like ARM to DPDK.org
• Adding SoC enhancements to DPDK for more devices
• Lets move forward by adding more network stacks
• Add support to enhance native applications
• Lets add other language bindings to enhance configuration and

application designs

• Lets collaborate on these and more…

Presenter
Presentation Notes
DPDK

Building a common platform
for everything and everywhere!

29

Thank you

30

	Future Enhancements to DPDK Framework
	Preserving Application Investment with DPDK
	Data Plane Development Kit Architecture
	DPDK - AE
	DPDK – What does the Future Hold?
	DPDK – crypto API
	DPDK – Crypto using Hardware and Software
	Crypto Device Configuration (RFC)
	Crypto Session Management (RFC)
	Crypto Operation (RFC)
	Crypto Packet Processing (RFC)
	DPDK – Flow classification
	DPDK – Flow Classification with Hardware
	DPDK – Flow Classification with Hardware
	DPDK – SoC support
	DPDK-AE (DPDK- Acceleration Enhancements)
	DPDK Extending Accelerators via SoC hardware
	DPDK – Changes to Support SoC hardware
	DPDK – Network Stack
	DPDK – Network Stacks and others
	DPDK – Network Stack(s)
	DPDK – Network Stack(s)
	DPDK – VirtIO
	DPDK – VirtIO
	DPDK – Language bindings
	DPDK – language suggestions
	DPDK – Scripting Languages
	DPDK – Summary
	Slide Number 29
	Thank you

